Copper Nanoclusters/Red Globe Flower Carbon as a Fenton-Like Catalyst for the Degradation of Amido Black 10B

Abstract

Cu-based copper nanoclusters have generated a great deal of interest based on for their fluorescent and catalytic properties. However, as heterogeneous catalysts, little attention has been given to the degradation of organic pollutants in Fenton-like reaction systems. Here, flower-like copper nanoclusters/flower carbon heterostructured microspheres were prepared by a one-pot mixing template-based method. With Cu-based copper nanoclusters/carbon (CuNCs/C) composite as a Fenton-like catalyst, a CuNCs/C-H2O2 system was used to degrade Amido Black 10B (AB-10B). The effects of different factors on the degradation rate of AB-10B were studied. A 98.6% degradation ratio of AB-10B was reached for the CuNCs/C -H2O2 based Fenton-like reaction within 180 min under optimal experimental conditions. The CuNCs/C concentration was 0.06 g/L, the dosage of H2O2 was 25 mmol/L, the mass ratio of CuNCs and the carbon was 1:2, pH = 6.0, and the reaction temperature was 40.0 °C. The removal rate of AB-10B on CuNCs/C decreased by less than 10% even after 6 catalytic cycles, which showed a remarkable reusability characteristic and high catalytic activity. Cu0 and Cu+ were found to co-exist in the catalysts and presented a high degradation effective for intermediates that were identified by liquid chromatography-mass spectrometry (LC-MS). These results indicated that the catalysts can be used as highly efficient Fenton-like catalyst for the degradation of toxic organic pollutants in wastewater.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abdollahi, T., & Farmanzadeh, D. (2018). Graphene-supported Cu11 nanocluster as a candidate catalyst for the selective hydrogenation of acetylene: a density functional study. Journal of Alloys and Compounds, 735, 117–130.

    CAS  Google Scholar 

  2. Alonso, F., Moglie, Y., Radivoy, G., & Yus, M. (2011). Multicomponent click synthesis of 1,2,3-triazoles from epoxides in water catalyzed by copper nanoparticles on activated carbon. The Journal of Organic Chemistry, 76, 8394–8405.

    CAS  Google Scholar 

  3. Alonso, F., Moglie, Y., Radivoy, G., & Yus, M. (2013). Alkenes as azido precursors for the one-pot synthesis of 1,2,3-triazoles catalyzed by copper nanoparticles on activated carbon. The Journal of Organic Chemistry, 78, 5031–5037.

    CAS  Google Scholar 

  4. Baghdasaryan, A., Grillo, R., Roy Bhattacharya, S., Sharma, M., Reginato, E., Theraulaz, H., Dolamic, I., Dadras, M., Rudaz, S., Varesio, E., & Burgi, T. (2018). Facile synthesis, size-separation, characterization, and antimicrobial properties of thiolated copper clusters. ACS Applied Nano Materials, 1, 4258–4267.

    CAS  Google Scholar 

  5. Bali, U., & Karagözoğlu, B. (2007). Performance comparison of Fenton process, ferric coagulation and H2O2/pyridine/Cu(II) system for decolorization of Remazol Turquoise Blue G-133. Dyes and Pigments, 74, 73–80.

    CAS  Google Scholar 

  6. Balogh, L., & Tomalia, D. A. (1998). Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. Journal of the American Chemical Society, 120, 7355–7356.

    CAS  Google Scholar 

  7. Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135.

    CAS  Google Scholar 

  8. Carvalho da Cruz Brambilla, C. M., Hilario Garcia, A. L., Rabaioli da Silva, F., Taffarel, S. R., Grivicich, I., Picada, J. N., Scotti, A., Dalberto, D., Mišík, M., Knasmüller, S., & da Silva, J. (2019). Amido Black 10B a widely used azo dye causes DNA damage in pro- and eukaryotic indicator cells. Chemosphere, 217, 430–436.

    CAS  Google Scholar 

  9. Cheng, M., Zeng, G. M., Huang, D. L., Lai, C., Liu, Y., Zhang, C., Wan, J., Hu, L., Zhou, C. Y., & Xiong, W. P. (2018). Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS/H2O2 Fenton-like system. Water Research, 138, 7–18.

    CAS  Google Scholar 

  10. Cui, Y., Zhang, X., Zhang, H., Cheng, Q., & Cheng, X. (2019). Construction of BiOCOOH/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic degradation of amido black 10B. Separation and Purification Technology, 210, 125–134.

    CAS  Google Scholar 

  11. De Laat, J., & Gallard, H. (1999). Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environmental Science & Technology, 33, 2726–2732.

    Google Scholar 

  12. Fernández-Ujados, M., Trapiella-Alfonso, L., Costa-Fernández, J. M., Pereiro, R., & Sanz-Medel, A. (2013). One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction. Nanotechnology, 24, 495601.

    Google Scholar 

  13. Fu, J., Chen, L., Li, J., & Zhang, Z. (2015). Current status and challenges of ion imprinting. Journal of Materials Chemistry A, 3, 13598–13627.

    CAS  Google Scholar 

  14. Garg, A., Mainrai, M., Bulasara, V. K., & Barman, S. (2015). Experimental investigation on adsorption of amido black 10B dye onto zeolite synthesized from fly ash. Chemical Engineering Communications, 202, 123–130.

    CAS  Google Scholar 

  15. Gawande, M. B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., & Varma, R. S. (2016). Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chemical Reviews, 116, 3722–3811.

    CAS  Google Scholar 

  16. Guo, T., Wang, K., Zhang, G., & Wu, X. (2019). A novel α-Fe2O3@g-C3N4 catalyst: synthesis derived from Fe-based MOF and its superior photo-Fenton performance. Applied Surface Science, 469, 331–339.

    CAS  Google Scholar 

  17. Guo, X., Hao, C., Jin, G., Zhu, H.-Y., & Guo, X.-Y. (2014). Copper nanoparticles on Graphene support: an efficient photocatalyst for coupling of nitroaromatics in visible light. Angewandte Chemie International Edition, 53, 1973–1977.

    CAS  Google Scholar 

  18. Guo, Y., Cao, F., Lei, X., Mang, L., Cheng, S., & Song, J. (2016). Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions. Nanoscale, 8, 4852–4863.

    CAS  Google Scholar 

  19. Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: possible approaches. Journal of Environmental Management, 182, 351–366.

    CAS  Google Scholar 

  20. Hu, L., Yuan, Y., Zhang, L., Zhao, J., Majeed, S., & Xu, G. (2013). Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Analytica Chimica Acta, 762, 83–86.

    CAS  Google Scholar 

  21. Hu, X., Liu, T., Zhuang, Y., Wang, W., Li, Y., Fan, W., & Huang, Y. (2016). Recent advances in the analytical applications of copper nanoclusters. TrAC Trends in Analytical Chemistry, 77, 66–75.

    CAS  Google Scholar 

  22. Hwang, H. J., Kwon, O.-K., & Kang, J. W. (2004). Copper nanocluster diffusion in carbon nanotube. Solid State Communications, 129, 687–690.

    CAS  Google Scholar 

  23. Jiang, L., Wang, J., Wu, X., & Zhang, G. (2017). A stable Fe2O3/expanded perlite composite catalyst for degradation of Rhodamine B in heterogeneous photo-Fenton system. Water, Air, & Soil Pollution, 228, 463.

    Google Scholar 

  24. Kashyap, J., Ashraf, S. M., & Riaz, U. (2017). Highly efficient photocatalytic degradation of amido black 10B dye using polycarbazole-decorated TiO2 nanohybrids. ACS Omega, 2, 8354–8365.

    CAS  Google Scholar 

  25. Kashyap, J., Gautam, S., Ashraf, S. M., & Riaz, U. (2018). Synergistic performance of sonolytically synthesized poly(1-naphthylamine)/TiO2 nanohybrids: degradation studies of amido black-10B dye. ChemistrySelect, 3, 11926–11934.

    CAS  Google Scholar 

  26. Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, 49, 1–14.

    CAS  Google Scholar 

  27. Kruk, M., & Jaroniec, M. (2001). Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chemistry of Materials, 13, 3169–3183.

    CAS  Google Scholar 

  28. Li, J., Xiao, C., Wang, K., Li, Y., & Zhang, G. (2019). Enhanced generation of reactive oxygen species under visible light irradiation by adjusting the exposed facet of FeWO4 nanosheets to activate oxalic acid for organic pollutant removal and Cr(VI) reduction. Environmental Science & Technology, 53, 11023–11030.

    CAS  Google Scholar 

  29. Lin, S.-S., & Gurol, M. D. (1998). Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environmental Science & Technology, 32, 1417–1423.

    CAS  Google Scholar 

  30. Lu, Y. Z., Wei, W. T., & Chen, W. (2012). Copper nanoclusters: synthesis, characterization and properties. Chinese Science Bulletin, 57, 41–47.

    CAS  Google Scholar 

  31. Meetani, M. A., Hisaindee, S. M., Abdullah, F., Ashraf, S. S., & Rauf, M. A. (2010). Liquid chromatography tandem mass spectrometry analysis of photodegradation of a diazo compound: a mechanistic study. Chemosphere, 80, 422–427.

    CAS  Google Scholar 

  32. Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review. Water Research, 139, 118–131.

    CAS  Google Scholar 

  33. Nieto-Juarez, J. I., Pierzchła, K., Sienkiewicz, A., & Kohn, T. (2010). Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight. Environmental Science & Technology, 44, 3351–3356.

    CAS  Google Scholar 

  34. Pham, A. N., Xing, G., Miller, C. J., & Waite, T. D. (2013). Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. Journal of Catalysis, 301, 54–64.

    CAS  Google Scholar 

  35. Salazar, R., Brillas, E., & Sirés, I. (2012). Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3. Applied Catalysis B: Environmental, 115-116, 107–116.

    CAS  Google Scholar 

  36. Simon, A. T., Dutta, D., Chattopadhyay, A., & Ghosh, S. S. (2019). Copper nanocluster-doped luminescent hydroxyapatite nanoparticles for antibacterial and antibiofilm applications. ACS Omega, 4, 4697–4706.

    CAS  Google Scholar 

  37. Su, Z., Li, J., Zhang, D. D., Ye, P., Li, H. P., & Yan, Y. W. (2019). Novel flexible Fenton-like catalyst: Unique CuO nanowires arrays on copper mesh with high efficiency across a wide pH range. Science of the Total Environment, 647, 587–596.

    CAS  Google Scholar 

  38. Sun, J.-H., Sun, S.-P., Wang, G.-L., & Qiao, L.-P. (2007). Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74, 647–652.

    CAS  Google Scholar 

  39. Sun, Z., Xiao, C., Hussain, F., & Zhang, G. (2018). Synthesis of stable and easily recycled ferric oxides assisted by Rhodamine B for efficient degradation of organic pollutants in heterogeneous photo-Fenton system. Journal of Cleaner Production, 196, 1501–1507.

    CAS  Google Scholar 

  40. Tanzifi, M., Yaraki, M. T., Kiadehi, A. D., Hosseini, S. H., Olazar, M., Bharti, A. K., Agarwal, S., Gupta, V. K., & Kazemi, A. (2018). Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: experimental investigation and artificial neural network modeling. Journal of Colloid and Interface Science, 510, 246–261.

    CAS  Google Scholar 

  41. Vázquez-Vázquez, C., Bañobre-López, M., Mitra, A., López-Quintela, M. A., & Rivas, J. (2009). Synthesis of small atomic copper clusters in microemulsions. Langmuir, 25, 8208–8216.

    Google Scholar 

  42. Wang, C., Wang, C., Xu, L., Cheng, H., Lin, Q., & Zhang, C. (2014). Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanoscale, 6, 1775–1781.

    CAS  Google Scholar 

  43. Wang, D., Yang, G., Ma, Q., Wu, M., Tan, Y., Yoneyama, Y., & Tsubaki, N. (2012). Confinement effect of carbon nanotubes: copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate. ACS Catalysis, 2, 1958–1966.

    CAS  Google Scholar 

  44. Wang, Q., Ma, Y., & Xing, S. (2018). Comparative study of Cu-based bimetallic oxides for Fenton-like degradation of organic pollutants. Chemosphere, 203, 450–456.

    CAS  Google Scholar 

  45. Wang, Z. G., Chen, B. K., & Rogach, A. L. (2017). Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horizons, 2, 135–146.

    CAS  Google Scholar 

  46. Wei, W., Lu, Y., Chen, W., & Chen, S. (2011). One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. Journal of the American Chemical Society, 133, 2060–2063.

    CAS  Google Scholar 

  47. Wilcoxon, J. P., & Abrams, B. L. (2006). Synthesis, structure and properties of metal nanoclusters. Chemical Society Reviews, 35, 1162–1194.

    CAS  Google Scholar 

  48. Wu, B., Xiong, Y., & Ge, Y. (2018). Simultaneous removal of SO2 and NO from flue gas with OH from the catalytic decomposition of gas-phase H2O2 over solid-phase Fe2(SO4)3. Chemical Engineering Journal, 331, 343–354.

    CAS  Google Scholar 

  49. Xiao, C., Li, J., & Zhang, G. (2018). Synthesis of stable burger-like α-Fe2O3 catalysts: Formation mechanism and excellent photo-Fenton catalytic performance. Journal of Cleaner Production, 180, 550–559.

    CAS  Google Scholar 

  50. Xiong, Y., Che, L. Y., Fu, Z. Y., & Ma, P. Y. (2018). Preparation of CuxO/C composite derived from Cu-MOFs as Fenton-like catalyst by two-step calcination strategy. Advanced Powder Technology, 29, 1331–1338.

    CAS  Google Scholar 

  51. Yang, X., Feng, Y., Zhu, S., Luo, Y., Zhuo, Y., & Dou, Y. (2014). One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution. Analytica Chimica Acta, 847, 49–54.

    CAS  Google Scholar 

  52. Zhang, Y. T., Liu, C., Xu, B. B., Qi, F., & Chu, W. (2016). Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2: combination of adsorption and catalysis oxidation. Applied Catalysis B: Environmental, 199, 447–457.

    CAS  Google Scholar 

  53. Zhao, M., Sun, L., & Crooks, R. M. (1998). Preparation of Cu nanoclusters within dendrimer templates. Journal of the American Chemical Society, 120, 4877–4878.

    CAS  Google Scholar 

  54. Zhao, T., Zhou, T., Yao, Q., Hao, C., & Chen, X. (2015). Metal nanoclusters: applications in environmental monitoring and cancer therapy. Journal of Environmental Science and Health, Part C, 33, 168–187.

    CAS  Google Scholar 

Download references

Funding

This work was jointly supported by Innovation Projects of Colleges and Universities in Guangdong Province (2018KTSCX249, 2018KQNCX294), Zhaoqing City Science and Technology Innovation Guidance Project (2017ZX028, 2018N017), and Innovative Entrepreneurship Project of Chinese College Students (201810580075).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shoulian Wei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 384 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Wen, X., Xiao, C. et al. Copper Nanoclusters/Red Globe Flower Carbon as a Fenton-Like Catalyst for the Degradation of Amido Black 10B. Water Air Soil Pollut 231, 280 (2020). https://doi.org/10.1007/s11270-020-04539-5

Download citation

Keywords

  • Copper nanoclusters
  • Red layer flower carbon
  • Fenton-like system
  • Amido black 10B
  • Degradation