Skip to main content

Advertisement

Log in

Assessment of Environmental Quality in the Tamaulipas Laguna Madre, Gulf of Mexico, by Integrated Biomarker Response Using the Cross-Barred Venus Clam Chione elevata

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The entire Laguna Madre of Tamaulipas is a natural protected area and a Priority Marine Region of Mexico. However, its important biodiversity and high levels of endemism are threatened by the discharge of different pollutants and activities related to the ocean oil and gas industry. Therefore, the assessment of these effects on this marine ecosystem is of paramount importance. At present, the joint approach of monitoring chemical contaminant levels, alongside the use of pollution biomarkers as surrogate measures of biological impact within the environment, provides the better evaluation of the environmental hazard. Within this context, a biomonitoring study using native Chione elevata mussels sampled from four locations along the Mexican Laguna Madre coasts evaluated whether a battery of select biomarkers was suitable for identifying and quantifying pollution-induced stress in mussels. The levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carboxylesterase (CaE), alkaline phosphatase (ALP), glutathione s-transferase (GST), and the oxygen radical absorbance capacity (ORAC) were measured in soft tissues samples. Different metals (Cd, Pb, Cu, Zn, and Fe) as well as total heavy hydrocarbons were also determined in sediments. Higher concentrations of metals were observed in sampling localities with marine influence possibly related to the presence of marine grass. The concentration of total heavy hydrocarbons, as expected, was higher in sites with intensive fishing activity. The integrated biomarker response (IBR) and the condition index of mussels allowed discriminating between localities of continental and marine influence, revealing that the sampling stations with continental influence were subjected to a greater stress as a result of anthropogenic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilera, C., Cruz, J., & Mendoza, R. (2015). Physiological response of alligator gar juveniles (Atractosteus spatula) exposed to sub-lethal doses of pollutants. Fish Physiology and Biochemistry, 41, 1015–1027. https://doi.org/10.1007/s10695-015-0066-5.

    Article  CAS  Google Scholar 

  • Andreotti, C., & Gagneten, A. M. (2006). Efectos ecotoxicológicos del sedimento del río Salado Inferior (Argentina) en la supervivencia y reproducción de Moina micrura (Crustacea: Cladocera). Reviews in Toxicology, 23, 146–150.

    CAS  Google Scholar 

  • Ardestani, M. M., van Straalen, N. M., & van Gestel, C. A. M. (2014). The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review. Environmental Pollution, 195, 133–147.

    Article  CAS  Google Scholar 

  • Arriaga-Cabrera, L., Vázquez-Domínguez, E., González-Rosenberg, J., Muñoz-López, E., Aguilar-Sierra, V. (1998) Regiones Marinas, México. Comisión Nacional para el Conocimiento y uso de la Biodiversidad. México.

  • Barriga-Vallejo, C., Aguilera, C., Cruz, J., Banda-Leal, J., Lazcano, D., & Mendoza, R. (2017). Ecotoxicological biomarkers in multiple tissues of the neotenic Ambystoma spp for a non-lethal monitoring of contaminant exposure in wildlife and captive populations. Water, Air & Soil Pollution, 228, 415. https://doi.org/10.1007/s11270-017-3590-3.

    Article  CAS  Google Scholar 

  • Beliaeff, B., & Burgeot, T. (2002). Integrated biomarkers response: a useful tool for ecological risk assessment. Environmental Toxicology and Chemistry, 21, 1316–1322.

    Article  CAS  Google Scholar 

  • Botello, A. V., Soto, L. A., Ponce-Velez, G., & Villanueva, S. F. (2015). Baseline for PAHs and metals in NW Gulf of Mexico related to the Deepwater Horizon oil spill. Estuarine, Coastal and Shelf Science, 156, 124–133. https://doi.org/10.1016/j.ecss.2014.11.010.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Broeg, K., & Lehtonen, K. K. (2006). Indices for the assessment of environmental pollution of the Baltic Sea coasts: integrated assessment of a multi-biomarker approach. Marine Pollution Bulletin, 53, 508–522.

    Article  CAS  Google Scholar 

  • Caeiro, S., Costa, M. H., DelValls, A., Repolho, T., Gonçalves, M., Mosca, A., Coimbra, A. P., Ramos, T. B., & Painho, M. (2009). Ecological risk assessment of sediment management areas: application to Sado Estuary, Portugal. Ecotoxicology, 18, 1165–1175.

    Article  CAS  Google Scholar 

  • Carvalho, R. N., Arukwe, A., Ait-Aissa, S., Bado-Nilles, A., Balzamo, S., Baun, A., Belkin, S., Blaha, L., Brion, F., Conti, D., Creusot, N., Essig, Y., Ferrero, V. E., Flander-Putrle, V., Fürhacker, M., Grillari-Voglauer, R., Hogstrand, C., Jonás, A., Kharlyngdoh, J. B., Loos, R., Lundebye, A. K., Modig, C., Olsson, P. E., Pillai, S., Polak, N., Potalivo, M., Sanchez, W., Schifferli, A., Schirmer, K., Sforzini, S., Stürzenbaum, S. R., Søfteland, L., Turk, V., Viarengo, A., Werner, I., Yagur-Kroll, S., Zounková, R., & Lettieri, T. (2014). Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they? Toxicol. Sci, 141, 218–233.

    Article  CAS  Google Scholar 

  • Cotou, E., Tsangaris, C., & Henry, M. (2013). Comparative study of biochemical and immunological biomarkers in three marine bivalves exposed at a polluted site. Environmental Science and Pollution Research, 20, 1812–1822. https://doi.org/10.1007/s11356-012-1150-3.

    Article  CAS  Google Scholar 

  • Damásio, J., Fernández-Sanjuan, M., Sánchez-Avila, J., Lacorte, S., Prat, N., Rieradevall, M., Soares, A. M. V. M., & Barata, C. (2011). Multi-biochemical responses of benthic macroinvertebrate species as a complementary tool to diagnose the cause of community impairment in polluted rivers. Water Research, 45, 3599–3613.

    Article  Google Scholar 

  • Damiens, G., Gnassia-Barelli, M., Loques, F., Romeıo, M., & Salbert, V. (2007). Integrated biomarker response index as a useful tool for environmental assessment evaluated using transplanted mussels. Chemosphere, 66, 574–583.

    Article  CAS  Google Scholar 

  • de Araujo, C. L., Loureiro, D. D., Ferreira, M. M., de Lacerda, L. D., Fernandez, M. A., & Valle Machado, W. T. (2014). Seagrass losses concerns: does sediment metal pollution matter? Geochimica Brasiliensis, 28(2), 131–136.

    Article  Google Scholar 

  • Dellali, M., Romeo, M., Gnassia-Barelli, M., & Aissa, P. (2004). A multivariate data analysis of the clam Ruditapes decussatus as sentinel organism of the Bizerta Lagoon (Tunisia). Water, Air, and Soil Pollution, 156, 131–144.

    Article  CAS  Google Scholar 

  • Devin, S., Burgeot, T., Giambérini, L., Minguez, L., & Pain-Devin, S. (2014). The integrated biomarker response revisited: optimization to avoid misuse. Environmental Science and Pollution Research, 21(4), 2448–2454.

    Article  CAS  Google Scholar 

  • Eguiluz de Antuñano, S. (2011). Sinopsis geológica de la Cuenca de Burgos, noreste de México: producción y recursos petroleros. Boletín de la Sociedad Geológica Mexicana, 63(2), 323–332.

    Article  Google Scholar 

  • Fernández-Linares, L. C., Rojas-Avelizapa, N. G., Rodlán-Carrillo, T. G., Ramírez-Islas, M. E., Zegarra-Martínez, H. G., Uribe-Hernández, R., Reyes-Ávila, R. J., Flores-Hernández, D., & Arce-Ortega, J. M. (2006). Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. Instituto Mexicano del Petróleo, Secretaria del Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología (pp. 19–91). México: México D.F..

    Google Scholar 

  • Green-Ruiz, C., Ruelas-Inzunza, J., & Páez-Osuna, F. (2005). Mercury in surface sediments and benthic organisms from Guaymas Bay, east coast of the Gulf of California. Environmental Geochemistry and Health, 27, 321–329.

    Article  CAS  Google Scholar 

  • Gutierrez-Galindo, E. A., Flores-Muñoz, G., & Villaescusa, J. (1988). Hidrocarburos clorados en moluscos del Valle de Mexicali y Alto Golfo de California. Ciencias Marinas, 14(3), 91–113.

    Article  Google Scholar 

  • Kim, W. K., Lee, S. K., & Jung, J. (2010). Integrated assessment of biomarker responses in common carp (Cyprinus carpio) exposed to perfluorinated organic compounds. Journal of Hazardous Materials, 180, 395–400.

    Article  CAS  Google Scholar 

  • Leiniö, S., & Lehtonen, K. K. (2005). Seasonal variability in biomarkers in the bivalves Mytilus edulis and Macoma balthica from the northern Baltic Sea. Comparative Biochemistry and Physiology C, 140, 408–421.

    Google Scholar 

  • Lehtonen, K. K., Schiedek, D., Koehler, A., Lang, T., Vuorinen, P. J., Förlin, L., Barsiene, J., Pempkowiak, J., & Gercken, J. (2006). BEEP project in the Baltic Sea: overview of results and outlines for a regional biological effects monitoring strategy. Marine Pollution Bulletin, 53, 523–537.

    Article  CAS  Google Scholar 

  • Luna-Acosta, A., Bustamante, P., Thomas-Guyon, H., Zaldibar, B., Izagirre, U., & Marigómez, I. (2017). Integrative biomarker assessment of the effects of chemically and mechanically dispersed crude oil in Pacific oysters, Crassostrea gigas. Science of the Total Environment, 598, 713–721.

    Article  CAS  Google Scholar 

  • Mazorra, M. T., Rubio, J. A., & Blasco, J. (2002). Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals. Comparative Biochemistry and Physioloy Part B: Biochemistry and Molecular Biology, 132(2), 241–249.

    Article  Google Scholar 

  • McNulty, J. K. (1961). Ecological effects of sewage pollution in Biscaine Bay, Florida: Sediments and the distribution of benthic and fouling macro-organisms. Bull. Mar. Sci. Gulf. And Carib., 11(3), 394–347.

    Google Scholar 

  • Mendoza, R., Arreaga, N., Hernández, J., Segovia, V., Jasso, I. & D. Pérez (2011) Aquatic invasive species in the Río Bravo/Laguna Madre ecological region. 146 pp. Commission for Environmental Cooperation. Montreal (Quebec) Canada H2Y 1N9.

  • Moore, H. B., & Lopez, N. N. (1969). The ecology of Chione cancellata. Bulletin of Marine Science, 19(1), 131–148.

    Google Scholar 

  • Moreira, S. M., & Guilhermino, L. (2005). The use of Mytilus galloprovincialis acetylcholinesterase and glutathione S-transferases activities as biomarkers of environmental contamination along the northwest Portuguese coast. Enviromental Monitoring and Assessment, 105, 309–325.

    Article  CAS  Google Scholar 

  • Nigro, M., Falleni, A., Del Barga, I., Scarcelli, V., Lucchesi, P., Regoli, F., & Frenzilli, G. (2006). Cellular biomarkers for monitoring estuarine environments: transplanted versus native mussels. Aquatic Toxicology, 77, 339–347.

    Article  CAS  Google Scholar 

  • Nuñez, E. O. (1975). Concentración de DDT en Chione californiensis de la parte norte del Golfo de California. Ciencias Marinas, 2(1), 6–13.

    Article  Google Scholar 

  • Páez-Osuna, F., Osuna-López, J. I., Izaguirre-Fierro, G., & Zazueta-Padilla, H. M. (1993). Heavy metals in clams from subtropical coastal lagoon associated with agricultural drainage basin. Bulletin of Environmental Contamination and Toxicology, 50, 915–921.

    Google Scholar 

  • Pampanin, D. M., Volpato, E., Marangon, I., & Nasci, C. (2005). Physiological measurements from native and transplanted mussel (Mytilus galloprovincialis) in the canals of Venice. Survival in air and condition index. Comparative Biochemistry and Physiology, 140A, 41–52.

    Article  CAS  Google Scholar 

  • Ponce-Vélez, G., Botello, A. V., & Díaz-González, G. (2006). Organic and inorganic pollutants in marine sediments from northern and southern continental shelf of the Gulf of Mexico. International Journal of Environmental Pollution, 26, 295–311.

    Article  Google Scholar 

  • Purchase, N. G., & Fergusson, J. E. (1986). Chione (austrovenus) stutchburyi, a New Zealand cockle, as a bio-indicator for lead pollution. Environmental Pollution Series B, Chemical and Physical, 11(2), 137–151. https://doi.org/10.1016/0143-148X(86)90040-6.

    Article  CAS  Google Scholar 

  • Pulich, W. M. (1980). Heavy metal accumulation by selected Halodule wrightii Asch. populations in the Corpus Christi Bay area. Contributions in Mar. Sci., 23, 89–100.

    CAS  Google Scholar 

  • Rendón-von Osten, J. & García-Guzmán, J. (1996) Evaluación del impacto ambiental de las actividades humanas en Laguna Madre, Tamaulipas p. 521–540. En: Botello A. V., J. L. Rojas-Galaviz, J. A. Benítez y D. Zárate-Lomelí (Eds.). Golfo de México, Contaminación e Impacto Ambiental: Diagnóstico y Tendencias. Universidad Autónoma de Campeche. EPOMEX. Serie Científica, 5.666.

  • Riosmena-Rodríguez, R., Talavera-Sáenz, A., Acosta-Vargas, B., & Gardner, S. C. (2010). Heavy metals dynamics in seaweeds and seagrasses in Bahía Magdalena, B.C.S., México. Journal of Applied Phycology, 22, 283–291.

    Article  Google Scholar 

  • Rodríguez-Fuentes, H., & Rodríguez-Absi, J. (2011). Metodos de Analisis de Suelos y Plantas: Criterios de interpretacion (2a Edicion ed.p. 239). Mexico: Trillas, S.A. de C.V.

    Google Scholar 

  • Roopnarine, P. D., & Vermeij, G. J. (2000). One species becomes two: the case of Chione cancellata, the resurrected C. elevata, and a phylogenetic analysis of Chione. Journal of Molluscan Studies, 66, 517–534.

    Article  Google Scholar 

  • Ruiz-Picos, R. A., Kohlmann, B., Sedeño-Díaz, J., & López-López, E. (2017). Assessing ecological impairments in Neotropical rivers of Mexico: calibration and validation of the Biomonitoring Working Party Index. International journal of Environmental Science and Technology, 14, 1835–1852. https://doi.org/10.1007/s13762-017-1299-x.

    Article  CAS  Google Scholar 

  • Sarkar, A. (2006). Biomarkers of marine pollution and bioremediation. Ecotoxicology, 15, 331–332.

    Article  Google Scholar 

  • Seabra Pereira, C. D., Abessa, D. M. S., Choueri, R. B., Almagro-Pastor, V., Cesar, A., Maranho, L. A., Martín-Díaz, M. L., Torres, R. J., Gusso-Choueri, P. K., Almeida, J. E., Cortez, F. S., Mozeto, A. A., Silbiger, H. L. N., Sousa, E. C. P. M., Del Valls, T. A., & Bainy, A. C. D. (2014). Ecological relevance of sentinels’ biomarker responses: a multi-level approach. Marine Environmental Research, 96, 118–126.

    Article  CAS  Google Scholar 

  • Serafim, A., Company, R., Lopes, B., Fonseca, V. F., Franca, S., Vasconcelos, R. P., Bebianno, M. J., & Cabral, H. N. (2012). Application of an integrated biomarker response index (IBR) to assess temporal variation of environmental quality in two Portuguese aquatic systems. Ecological Indicators, 19, 215–225.

    Article  CAS  Google Scholar 

  • Sheehan, D., & Power, A. (1999). Effects of seasonality on xenobiotic and antioxidant defense mechanisms of bivalve molluscs. Comparative Biochemistry and Physiology. C, 123, 193–199.

    Article  CAS  Google Scholar 

  • Solé, M., & Sanchez-Hernandez, J. C. (2018). Elucidating the importance of mussel carboxylesterase activity as exposure biomarker of environmental contaminants of current concern: an in vitro study. Ecological Indicators, 85, 432–439.

    Article  Google Scholar 

  • Sunda, W. G., & Cai, W. J. (2012). Eutrophication induced CO2-acidification of subsurface coastal waters: interactive effects of temperature, salinity, and atmospheric PCO2. Environmental Science & Technology, 46, 10651–10659.

    Article  CAS  Google Scholar 

  • Torres-Cerón, M., Leija-Tristán, A., Aguilera-González, C.J. & Vidales-Contreras, J.A. (2014) Evaluación de la condición biológica del área meridional de la laguna Madre en San Fernando, Tamaulipas, con base en la malaco- fauna béntica. p. 899-932. in: A.V. Botello, J. Rendón von Osten, J. A. Benítez y G. Gold-Bouchot (eds.). Golfo de México. Contaminación e im- pacto ambiental: diagnóstico y tendencias. UAC, UNAM-ICMYL, CINVESTAV-Unidad Mérida. 1210. ISBN 978-607-7887-71-3.

  • Tsangaris, C., Kormas, K., Stroggyloudi, E., Hatzianestis, I., Neofitou, C., Andral, B., & Galgani, F. (2010). Multiple biomarkers of pollution effects in caged mussels on the Greek coastline. Comp Bioche. Physiol., 151C, 369–378.

    CAS  Google Scholar 

  • Tsangaris, C., Hatzianestis, I., Catsiki, V. A., Kormas, K. A., Strogyloudi, E., Neofitou, C., Andral, B., & Galgani, F. (2011). Active biomonitoring in Greek coastal waters: application of the integrated biomarker response index in relation to contaminant levels in caged mussels. Sci. Total Environ., 412–413, 359–365.

    Article  Google Scholar 

  • US Environmental Protection Agency (1996). Method 3540 C: Soxhlet extraction. Revision 3 December 1996.

  • US Environmental Protection Agency, (2007). SW-846 test method 8081B: organochlorine pesticides by gas chromatography.

  • van Der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers risk assessment: a review. Environmental Toxicology and Pharmacology, 13(2), 57–149.

    Article  Google Scholar 

  • Vázquez-Silva, G., Castro-Mejía, G., González-Mora, I., Pérez-Rodríguez, R., & Castro-Barrera, T. (2006). Bioindicadores como herramientas para determinar la calidad de agua. ContactoS, 60, 41–48.

    Google Scholar 

  • Watson, E. B., Wasson, K., Pasernack, G. B., Woolfolk, A., Van Dyke, E., Gray, A. B., Pakenham, A., & Wheatcroft, R. A. (2011). Applications from paleoecology to environmental management and restoration in a dynamic coastal environment. Restoration Ecology, 19(6), 765–775.

    Article  Google Scholar 

  • Wiklund, A. K. E., Adolfsson-Erici, M., Liewenborg, B., & Gorokhova, E. (2014). Sucralose induces biochemical responses in Daphnia magna. PLoS One, 9(4), e92771. https://doi.org/10.1371/journal.pone.0092771.

    Article  CAS  Google Scholar 

  • Yañez, A. C. J., Schlaepfer. (1968). Sedimentología de la Laguna Madre, Tamaulipas. 1ª Parte: Composición y Distribución de los sedimentos recientes de la Laguna Madre, Tamaulipas. Inst. Geol. UNAM., México, Bol. 84. Pp. 9–42.

Download references

Acknowledgments

The authors would like to thank Biol. Gabriela Rendon for her laboratory help, Biol. Alejandra Arreola for reviewing the English version of the manuscript, and Biol. Jose Carlos Pizaña Soto and Elva Ivonne Bustamante Moreno from CONANP for their support in the technical opinion for the collection of clams.

Funding

The work received financial support from the Programs for the Support of Scientific and Technological Research (CONACYT 105116, PAICYT CN781-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Mendoza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera, C., Leija, A., Torres, M. et al. Assessment of Environmental Quality in the Tamaulipas Laguna Madre, Gulf of Mexico, by Integrated Biomarker Response Using the Cross-Barred Venus Clam Chione elevata. Water Air Soil Pollut 230, 27 (2019). https://doi.org/10.1007/s11270-019-4078-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4078-0

Keywords

Navigation