Advertisement

Lead Toxicity in Cereals and Its Management Strategies: a Critical Review

  • Muhammad Rizwan
  • Shafaqat Ali
  • Muhammad Zia ur Rehman
  • Muhammad Rizwan Javed
  • Arooj Bashir
Article
  • 277 Downloads

Abstract

Cereal grains such as wheat, rice, and maize are widely consumed as a staple food worldwide. Lead (Pb) is one of the non-essential trace elements and its toxicity in crops especially cereals is a widespread problem. The present review highlighted Pb toxicity in cereal and management strategies to reduce its uptake in plants. Lead toxicity reduced the cereal growth, photosynthesis, nutritional value, yield, and grain quality. The response of cereals to excess varies with plant species, levels of Pb in soil, and growth conditions. Reducing Pb bioavailability in the soil is a viable approach due to its non-degradability either by microbes, chemicals, or other means. Cultivation of low Pb-accumulating cultivars may reduce the risk of Pb toxicity in plants and humans via the food chain. Use of plant growth regulators, microbes, organic, and inorganic amendments might be promising techniques for further decreasing Pb contents in shoot and grains. Soil amendments along with selecting low Pb-accumulating cultivars might be a feasible approach to get cereal grains with low Pb concentrations. Furthermore, most of the studies have been conducted under controlled conditions either in hydroponic or pots and less is known about the effects of Pb management approaches under ambient field conditions.

Keywords

Food security Lead Cereals Biochar Agricultural practices Inorganic amendments Silicon 

Notes

Acknowledgments

Financial support from Government College, University Faisalabad is gratefully acknowledged.

References

  1. Abbas, T., Rizwan, M., Ali, S., Rehman, M. Z., Qayyum, M. F., Abbas, F., Hannan, F., Rinklebe, J., & Ok, Y. S. (2017). Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology and Environmental Safety, 140, 37–47.CrossRefGoogle Scholar
  2. Abbas, T., Rizwan, M., Ali, S., Adrees, M., Rehman, M. Z., Qayyum, M. F., Ok, Y. S., & Murtaza, G. (2018a). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research.  https://doi.org/10.1007/s11356-017-8987-4.
  3. Abbas, T., Rizwan, M., Ali, S., Adrees, M., Mahmood, A., Rehman, M. Z., Ibrahim, M., Arshad, M., & Qayyum, M. (2018b). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicology and Environmental Safety, 148, 825–833.CrossRefGoogle Scholar
  4. Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Rehman, M. Z., Irshad, M. K., & Bharwana, S. A. (2015a). The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22, 8148–8162.CrossRefGoogle Scholar
  5. Adrees, M., Ali, S., Rizwan, M., Rehman, M. Z., Ibrahim, M., Abbas, F., Farid, M., Qayyum, M. F., & Irshad, M. K. (2015b). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicology and Environmental Safety, 119, 186–197.CrossRefGoogle Scholar
  6. Ahmad, H. R., Ghafoor, A., Corwin, D. L., Aziz, M. A., Saifullah, & Sabir, M. (2011a). Organic and inorganic amendments affect soil concentration and accumulation of cadmium and lead in wheat in calcareous alkaline soils. Communication in Soil Science and Plant Analysis, 42, 111–122.CrossRefGoogle Scholar
  7. Ahmad, M. S. A., Ashraf, M., Tabassam, Q., Hussain, M., & Firdous, H. (2011b). Lead (Pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biological Trace Element Research, 144, 1229–1239.CrossRefGoogle Scholar
  8. Ahmad, M., Hashimoto, Y., Moon, D.H., Lee, S.S., & Ok, Y.S. (2012). Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach. Journal of Hazardous Materials 209–210, 392–401.Google Scholar
  9. Ahmad, M., Lee, S. S., Lim, J. E., Lee, S. E., Cho, J. S., Moon, D. H., Hashimoto, Y., & Ok, Y. S. (2014). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere, 95, 433–441.CrossRefGoogle Scholar
  10. Ahmad, M., Hashimoto, Y., Moon, D.H., Lee, S.S., & Ok, Y.S. (2012). Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach. Journal of Hazardous Materials 209–210, 392–401Google Scholar
  11. Ahmad, M., Lee, S. S., Lee, S. E., Al-Wabel, M. I., Tsang, D. C., & Ok, Y. S. (2017a). Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of Soils and Sediment, 17, 717–730.CrossRefGoogle Scholar
  12. Ahmad, R., Ali, S., Hannan, F., Rizwan, M., Iqbal, M., Hassan, Z., Akram, N. A., Maqbool, S., & Abbas, F. (2017b). Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleracea botrytis L.). Environmental Science and Pollution Research, 24, 8814–8824.CrossRefGoogle Scholar
  13. Ahmed, M. K., Shaheen, N., Islam, M. S., Habibullah-Al-Mamun, M., Islam, S., & Banu, C. P. (2015). Trace elements in two staple cereals (rice and wheat) and associated health risk implications in Bangladesh. Environmental Monitoring and Assessment, 187, 1–11.CrossRefGoogle Scholar
  14. Akhtar, N., Khan, S., Malook, I., Rehman, S. U., & Jamil, M. (2017). Pb-induced changes in roots of two cultivated rice cultivars grown in lead-contaminated soil mediated by smoke. Environmental Science and Pollution Research, 24, 21298–21310.CrossRefGoogle Scholar
  15. Ali, B., Xu, X., Gill, R. A., Yang, S., Ali, S., Tahir, M., & Zhou, W. (2014a). Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Industrial Crops and Products, 52, 617–626.CrossRefGoogle Scholar
  16. Ali, B., Mwamba, T. M., Gill, R. A., Yang, C., Ali, S., Daud, M. K., Wu, Y., & Zhou, W. (2014b). Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide. Plant Growth Regulation, 74, 261–273.CrossRefGoogle Scholar
  17. Ali, B., Song, W. J., Hu, W. Z., Luo, X. N., Gill, R. A., Wang, J., & Zhou, W. J. (2014c). Hydrogen sulfide alleviates lead-induced photosynthetic and ultrastructural changes in oilseed rape. Ecotoxicology and Environmental Safety, 102, 25–33.CrossRefGoogle Scholar
  18. Ali, Q., Daud, M. K., Haider, M. Z., Ali, S., Rizwan, M., Aslam, N., Noman, A., Iqbal, N., Shahzad, F., Deeba, F., & Ali, I. (2017). Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiology and Biochemistry, 119, 50–58.CrossRefGoogle Scholar
  19. Almaroai, Y. A., Usman, A. R., Ahmad, M., Moon, D. H., Cho, J. S., Joo, Y. K., Jeon, C., Lee, S. S., & Ok, Y. S. (2014). Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environmental Earth Sciences, 71, 1289–1296.CrossRefGoogle Scholar
  20. Al-Wabel, M. I., Usman, A. R., El-Naggar, A. H., Aly, A. A., Ibrahim, H. M., Elmaghraby, S., & Al-Omran, A. (2015). Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences, 22, 503–511.CrossRefGoogle Scholar
  21. Ashraf, U., & Tang, X. (2017). Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere, 176, 141–155.CrossRefGoogle Scholar
  22. Ashraf, U., Kanu, A. S., Mo, Z., Hussain, S., Anjum, S. A., Khan, I., Abbas, R. N., & Tang, X. (2015). Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environmental Science and Pollution Research, 22, 18318–18332.CrossRefGoogle Scholar
  23. Ashraf, U., Hussain, S., Anjum, S. A., Abbas, F., Tanveer, M., Noor, M. A., & Tang, X. (2017a). Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity. Plant Physiology and Biochemistry, 115, 461–471.CrossRefGoogle Scholar
  24. Ashraf, U., Kanu, A. S., Deng, Q., Mo, Z., Pan, S., Tian, H., & Tang, X. (2017b). Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Frontiers in Plant Sciences, 8, 1–17.Google Scholar
  25. Ashraf, U., Hussain, S., Akbar, N., Anjum, S. A., Hassan, W., & Tang, X. (2018). Water management regimes alter Pb uptake and translocation in fragrant rice. Ecotoxicology and Environmental Safety, 149, 128–134.CrossRefGoogle Scholar
  26. Awad, Y. M., Vithanage, M., Niazi, N. K., Rizwan, M., Rinklebe, J., Yang, J. E., Ok, Y. S., & Lee, S. S. (2017). Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic-and lead-contaminated soil amended with biochars. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-017-9989-3.
  27. Awan, S., Jabeen, M., Imran, Q. M., Ullah, F., Mehmood, Z., Jahngir, M., & Jamil, M. (2015). Effects of lead toxicity on plant growth and biochemical attributes of different rice (Oryza Sativa L.) varieties. Journal of Bio-Molecular Sciences, 3, 44–55.Google Scholar
  28. Balakhnina, T. I., & Nadezhkina, E. S. (2017). Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russian Journal of Plant Physiology, 64, 215–223.CrossRefGoogle Scholar
  29. Ban, Y., Xu, Z., Yang, Y., Zhang, H., Chen, H., & Tang, M. (2017). Effect of dark septate endophytic fungus Gaeumannomyces cylindrosporus on plant growth, photosynthesis and Pb tolerance of maize (Zea mays L.). Pedosphere, 27, 283–292.CrossRefGoogle Scholar
  30. Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., Zhang, A., Rutlidge, H., Wong, S., Chia, C., & Marjo, C. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272, 121–128.CrossRefGoogle Scholar
  31. Biswas, J. K., Mondal, M., Rinklebe, J., Sarkar, S. K., Chaudhuri, P., Rai, M., Shaheen, S. M., Song, H., & Rizwan, M. (2017). Multi-metal resistance and plant growth promotion potential of a wastewater bacterium Pseudomonas aeruginosa and its synergistic benefits. Environmental Geochemistry and Health, 39, 1583–1593.CrossRefGoogle Scholar
  32. Cai, F., Wu, X., Zhang, H., Shen, X., Zhang, M., Chen, W., Gao, Q., White, J. C., Tao, S., & Wang, X. (2017). Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact., 5, 101–108.CrossRefGoogle Scholar
  33. Cao, F., Wang, R., Cheng, W., Zeng, F., Ahmed, I. M., Hu, X., Zhang, G., & Wu, F. (2014). Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation. Science of the Total Environment, 496, 275–281.CrossRefGoogle Scholar
  34. Cheng, F., Zhao, N., Xu, H., Li, Y., Zhang, W., Zhu, Z., & Chen, M. (2006a). Cadmium and lead contamination in japonica rice grains and its variation among the different locations in Southeast China. Science of the Total Environment, 359, 156–166.CrossRefGoogle Scholar
  35. Cheng, W., Yao, H. G., Wu, W., & Xu, M. (2006b). Genotypic and environmental variation in cadmium, chromium, arsenic, nickel, and lead concentrations in rice grains. Journal of Zhejiang University Sciences B, 7, 565–571.CrossRefGoogle Scholar
  36. Dey, S. K., Dey, J., Patra, S., & Pothal, D. (2007). Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Brazilian Journal of Plant Physiology, 19, 53–60.CrossRefGoogle Scholar
  37. Fahr, M., Laplaze, L., Bendaou, N., Hocher, V., El Mzibri, M., Bogusz, D., & Smouni, A. (2013). Effect of lead on root growth. Frontiers in Plant Sciences, 4, 1–7.Google Scholar
  38. Fang, Y., Sun, X., Yang, W., Ma, N., Xin, Z., Fu, J., Liu, X., Liu, M., Mariga, A. M., Zhu, X., & Hu, Q. (2014). Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chemistry, 147, 147–151.CrossRefGoogle Scholar
  39. FAOSTAT. (2013). Food and agriculture organisation of the United Nations. URL http://www.fao.org/faostat/en/#home
  40. Farid, M., Ali, S., Rizwan, M., Ali, Q., Abbas, F., Bukhari, S. A. H., Saeed, R., & Wu, L. (2017). Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicology and Environmental Safety, 145, 90–102.CrossRefGoogle Scholar
  41. Gao, J., Zhang, Y., Lu, C., Peng, H., Luo, M., Li, G., Shen, Y., Ding, H., Zhang, Z., Pan, G., & Lin, H. (2015). The development dynamics of the maize root transcriptome responsive to heavy metal Pb pollution. Biochemical and Biophysical Research Communications, 458, 287–293.CrossRefGoogle Scholar
  42. Gautam, M., Sengar, R. S., Chaudhary, R., Sengar, K., & Garg, S. (2010). Possible cause of inhibition of seed germination in two rice cultivars by heavy metals Pb2+ and Hg2+. Toxicology and Environmental Chemistry, 92, 1111–1119.CrossRefGoogle Scholar
  43. Ghani, A. (2010). Effect of lead toxicity on growth, chlorophyll and lead (Pb2+) contents of two varieties of maize (Zea mays L). Pakistan Journal of Nutrition, 9, 887–891.CrossRefGoogle Scholar
  44. Gil-Diaz, M., Pinilla, P., Alonso, J., & Lobo, M. C. (2017). Viability of a nanoremediation process in single or multi-metal (loid) contaminated soils. Journal of Hazardous Materials, 321, 812–819.CrossRefGoogle Scholar
  45. Gottesfeld, P., Were, F. H., Adogame, L., Gharbi, S., San, D., Nota, M. M., & Kuepouo, G. (2018). Soil contamination from lead battery manufacturing and recycling in seven African countries. Environmental Research, 161, 609–614.CrossRefGoogle Scholar
  46. Gul, I., Manzoor, M., Silvestre, J., Rizwan, M., Hina, K., Kallerhoff, J., & Arshad, M. (2018). EDTA−assisted phytoextraction of lead and cadmium by pelargonium cultivars grown on spiked soil. International Journal of Phytoremediation.  https://doi.org/10.1080/15226514.2018.1474441.
  47. Gupta, D. K., Nicoloso, F. T., Schetinger, M. R. C., Rossato, L. V., Pereira, L. B., Castro, G. Y., Srivastava, S., & Tripathi, R. D. (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. Journal of Hazardous Materials, 172, 479–484.CrossRefGoogle Scholar
  48. Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X., & He, Z. (2018). Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in Southeast China. Journal of Environmental Management, 207, 159–168.CrossRefGoogle Scholar
  49. Hussain, A., Abbas, N., Arshad, F., Akram, M., Khan, Z. I., Ahmad, K., Mansha, M., & Mirzaei, F. (2013). Effects of diverse doses of lead (Pb) on different growth attributes of Zea-Mays L. Agricultural Science, 4, 262–265.CrossRefGoogle Scholar
  50. Igalavithana, A. D., Mandal, S., Niazi, N. K., Vithanage, M., Rizwan, M., Oleszczuk, P., Al-Wabel, M. I., Bolan, N., & Ok, Y. S. (2017). Advances and future directions of biochar characterization methods and applications. Critical Reviews of Environmental Science and Technology, 47, 2275–2330.CrossRefGoogle Scholar
  51. Ighoavodha, M., Begonia, M., Begonia, G., Miller, G., Ntoni, J., & Stringer, H. (2014). Effects of rhizobacteria on the growth and uptake of lead by wheat (Tritium aestivum L.). World Environment, 4, 101–110.Google Scholar
  52. Iqbal, M. M., Murtaza, G., Saqib, Z. A., & Ahmad, R. (2015). Growth and physiological responses of two rice varieties to applied lead in normal and salt-affected soils. International Journal of Agriculture and Biology, 17, 901–910.CrossRefGoogle Scholar
  53. Iqbal, M. M., Murtaza, G., Naz, T., Akhtar, J., Afzal, M., Meers, E., & Laing, G. D. (2017a). Amendments affect lead mobility and modulated chemo-speciation under different moisture regimes in normal and salt-affected lead-contaminated soils. International journal of Environmental Science and Technology, 14, 113–122.CrossRefGoogle Scholar
  54. Iqbal, M. M., Murtaza, G., Naz, T., Niazi, N. K., Shakar, M., Wattoo, F. M., Farooq, O., Ali, M., Afzal, I., Mehdi, S. M., & Mahmood, A. (2017b). Effects of lead salts on growth, chlorophyll contents and tissue concentration of rice genotypes. International Journal of Agriculture and Biology, 19, 69–76.CrossRefGoogle Scholar
  55. Jiang, J., Xu, R. K., Jiang, T. Y., & Li, Z. (2012a). Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials, 229, 145–150.CrossRefGoogle Scholar
  56. Jiang, S., Shi, C., & Wu, J. (2012b). Genotypic differences in arsenic, mercury, lead and cadmium in milled rice (Oryza sativa L.). International Journal of Food Science and Nutrition, 63, 468–475.CrossRefGoogle Scholar
  57. Kaur, G., Kaur, S., Singh, H. P., Batish, D. R., Kohli, R. K., & Rishi, V. (2015b). Biochemical adaptations in Zea mays roots to short-term Pb2+ exposure: ROS generation and metabolism. Bulletin of Environmental Contamination and Toxicology, 95, 246–253.CrossRefGoogle Scholar
  58. Kaur, G., Singh, H. P., Batish, D. R., & Kohli, R. K. (2012a). A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb2+). Protoplasma, 249, 1091–1100.CrossRefGoogle Scholar
  59. Kaur, G., Singh, H. P., Batish, D. R., & Kohli, R. K. (2013). Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma, 250, 53–62.CrossRefGoogle Scholar
  60. Kaur, G., Singh, H. P., Batish, D. R., & Kohli, R. K. (2014). Morphological, anatomical, and ultrastructural changes (visualized through scanning electron microscopy) induced in Triticum aestivum by Pb2+ treatment. Protoplasma, 251, 1407–1416.CrossRefGoogle Scholar
  61. Kaur, G., Singh, H. P., Batish, D. R., & Kohli, R. K. (2015a). Adaptations to oxidative stress in Zea mays roots under short-term Pb2+ exposure. Biologia, 70, 190–197.Google Scholar
  62. Kaur, G., Singh, H. P., Batish, D. R., & Kumar, R. K. (2012b). Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. Journal of Environmental Biology, 33, 265–269.Google Scholar
  63. Kaur, G., Singh, H. P., Batish, D. R., Mahajan, P., Kohli, R. K., & Rishi, V. (2015c). Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots. PLoS One, 10, 1–18.Google Scholar
  64. Kazemi, R., Karimian, N., Ronaghi, A., & Yasrebi, J. (2016). The effect of two humic substances on the growth and lead uptake of corn in calcareous soil. Iran Agriculture Research, 35, 39–48.Google Scholar
  65. Keller, C., Rizwan, M., Davidian, J. C., Pokrovsky, O. S., Bovet, N., Chaurand, P., & Meunier, J. D. (2015). Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta, 241, 847–860.CrossRefGoogle Scholar
  66. Khaliq, A., Ali, S., Hameed, A., Farooq, M. A., Farid, M., Shakoor, M. B., Mahmood, K., Ishaque, W., & Rizwan, M. (2016). Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis and suppressing Ni uptake and oxidative stress. Archives of Agronomy and Soil Science, 62, 633–647.CrossRefGoogle Scholar
  67. Khan, N., & Bano, A. (2016). Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. International Journal of Phytoremediation, 18, 211–221.CrossRefGoogle Scholar
  68. Khan, S., Cao, Q., Chen, B. D., & Zhu, Y. G. (2006). Humic acids increase the Phytoavailability of Cd and Pb to wheat plants cultivated in freshly spiked, contaminated soil. Journal of Soils and Sediment, 6, 236–242.CrossRefGoogle Scholar
  69. Khan, S., Chao, C., Waqas, M., Arp, H.P.H., & Zhu, Y.G. (2013). Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environmental Science & Technology, 47, 8624-8632.Google Scholar
  70. Kim, S. C., Kim, H. S., Seo, B. H., Owens, G., & Kim, K. R. (2016). Phytoavailability control based management for paddy soil contaminated with Cd and Pb: implications for safer rice production. Geoderma, 270, 83–88.CrossRefGoogle Scholar
  71. Kim, Y. Y., Yang, Y. Y., & Lee, Y. (2002). Pb and Cd uptake in rice roots. Physiologia Plantarum, 116, 368–372.CrossRefGoogle Scholar
  72. Kroutil, M., Hejtmánková, A., & Lachman, J. (2010). Effect of spring wheat (Triticum aestivum L.) treatment with brassinosteroids on the content of cadmium and lead in plant aerial biomass and grain. Plant Soil & Environment, 56, 43–50.CrossRefGoogle Scholar
  73. Kumar, N., Dubey, A. K., Jaiswal, P. K., Sahu, N., Behera, S. K., Tripathi, R. D., & Mallick, S. (2016). Selenite supplementation reduces arsenate uptake greater than phosphate but compromises the phosphate level and physiological performance in hydroponically grown Oryza sativa L. Environmental Toxicology and Chemistry, 35, 163–172.CrossRefGoogle Scholar
  74. Kushwaha, A., Hans, N., Kumar, S., & Rani, R. (2018). A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicology and Environmental Safety, 147, 1035–1045.CrossRefGoogle Scholar
  75. Lai, Y. C., Syu, C. H., Wang, P. J., Lee, D. Y., Fan, C., & Juang, K. W. (2018). Field experiment for determining lead accumulation in rice grains of different genotypes and correlation with iron oxides deposited on rhizosphere soil. Science of the Total Environment, 610, 845–853.CrossRefGoogle Scholar
  76. Lamhamdi, M., Bakrim, A., Aarab, A., Lafont, R., & Sayah, F. (2011). Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Comptes Rendus Biologia, 334, 118–126.CrossRefGoogle Scholar
  77. Lamhamdi, M., Bakrim, A., Bouayad, N., Aarab, A., & Lafont, R. (2013a). Protective role of a methanolic extract of spinach (Spinacia oleracea L.) against Pb toxicity in wheat (Triticum aestivum L.) seedlings: beneficial effects for a plant of a nutraceutical used with animals. Environmental Science and Pollution Research, 20, 7377–7385.CrossRefGoogle Scholar
  78. Lamhamdi, M., El Galiou, O., Bakrim, A., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Aarab, A., & Lafont, R. (2013b). Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi Journal of Biological Sciences, 20, 29–36.CrossRefGoogle Scholar
  79. Li, X., & Zhang, L. (2015). Endophytic infection alleviates Pb2+ stress effects on photosystem II functioning of Oryza sativa leaves. Journal of Hazardous Materials, 295, 79–85.CrossRefGoogle Scholar
  80. Li, T., Liu, M. J., Zhang, X. T., Zhang, H. B., Sha, T., & Zhao, Z. W. (2011). Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Science of the Total Environment, 409, 1069–1074.CrossRefGoogle Scholar
  81. Li, X., Bu, N., Li, Y., Ma, L., Xin, S., & Zhang, L. (2012). Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions. Journal of Hazardous Materials, 213, 55–61.CrossRefGoogle Scholar
  82. Li, H., Liu, Y., Chen, Y., Wang, S., Wang, M., Xie, T., & Wang, G. (2016). Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability. Scientific Reports, 6, 1–8.CrossRefGoogle Scholar
  83. Liang, C. C., Li, T., Xiao, Y. P., Liu, M. J., Zhang, H. B., & Zhao, Z. W. (2009). Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. International Journal of Phytoremediation, 11, 692–703.CrossRefGoogle Scholar
  84. Lim, J. E., Ahmad, M., Lee, S. S., Shope, C. L., Hashimoto, Y., Kim, K. R., Usman, A. R., Yang, J. E., & Ok, Y. S. (2013). Effects of lime-based waste materials on immobilization and Phytoavailability of cadmium and lead in contaminated soil. Clean–Soil, Air, Water, 41, 1235–1241.CrossRefGoogle Scholar
  85. Liu, J., Li, K., Xu, J., Zhang, Z., Ma, T., & Lu, X. (2003). Lead toxicity, uptake, and translocation in different rice cultivars. Plant Science, 165, 793–802.CrossRefGoogle Scholar
  86. Liu, W. X., Liu, J. W., Wu, M. Z., Li, Y., Zhao, Y., & Li, S. R. (2009). Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bulletin of Environment Contamination and Toxicology, 82, 343–347.CrossRefGoogle Scholar
  87. Liu, J., Leng, X., Wang, M., Zhu, Z., & Dai, Q. (2011). Iron plaque formation on roots of different rice cultivars and the relation with lead uptake. Ecotoxicology and Environmental Safety, 74, 1304–1309.CrossRefGoogle Scholar
  88. Liu, J., Ma, X., Wang, M., & Sun, X. (2013). Genotypic differences among rice cultivars in lead accumulation and translocation and the relation with grain Pb levels. Ecotoxicology and Environmental Safety, 90, 35–40.CrossRefGoogle Scholar
  89. Liu, J., Cai, H., Mei, C., & Wang, M. (2015a). Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Frontiers of Environmental Science and Engineering, 9, 905–911.CrossRefGoogle Scholar
  90. Liu, W., Liang, L., Zhang, X., & Zhou, Q. (2015b). Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars. Environmental Science and Pollution Research, 22, 8432–8441.CrossRefGoogle Scholar
  91. Liu, K., Lv, J., Dai, Y., Zhang, H., & Cao, Y. (2016). Cross-species extrapolation of models for predicting lead transfer from soil to wheat grain. PLoS One, 11, 1–16.Google Scholar
  92. Ma, X., Zhu, S., Ai, S., Liu, B., Zhang, W., & Zhang, Y. (2016). Density-dependent accumulation of heavy metals in spring wheat (Triticum aestivum) and the risk assessment from weak alkaline soils, northwest of China. International Journal of Agriculture Science and Technology, 4, 1–7.CrossRefGoogle Scholar
  93. Malkowski, E., Kita, A., Galas, W., Karcz, W., & Kuperberg, J. M. (2002). Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regulation, 37, 69–76.CrossRefGoogle Scholar
  94. Mohamed, A. K. S., Qayyum, M. F., Abdel-Hadi, A. M., Rehman, R. A., Ali, S., & Rizwan, M. (2017). Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Archives of Agronomy and Soil Science, 63, 1736–1747.CrossRefGoogle Scholar
  95. Munir, T., Rizwan, M., Kashif, M., Shahzad, A., Ali, S., Amin, N., Zahid, R., Alam, M. F. E., & Imran, M. (2018). Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Digest Journal of Nanomaterials and Biostructures, 13, 315–323.Google Scholar
  96. Namgay, T., Singh, B., & Singh, B. P. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Research, 48, 638–647.CrossRefGoogle Scholar
  97. Naseri, M., Vazirzadeh, A., Kazemi, R., & Zaheri, F. (2015). Concentration of some heavy metals in rice types available in shiraz market and human health risk assessment. Food Chemistry, 175, 243–248.CrossRefGoogle Scholar
  98. Nawaz, F., Naeem, M., Akram, A., Ashraf, M. Y., Ahmad, K. S., Zulfiqar, B., Sardar, H., Shabbir, R. N., Majeed, S., Shehzad, M. A., & Anwar, I. (2017). Seed priming with KNO3 mediates biochemical processes to inhibit lead toxicity in maize (Zea mays L.). Journal of the Science of Food and Agriculture, 14, 4780–4789.CrossRefGoogle Scholar
  99. Norton, G. J., Williams, P. N., Adomako, E. E., Price, A. H., Zhu, Y., Zhao, F. J., McGrath, S., Deacon, C. M., Villada, A., Sommella, A., & Lu, Y. (2014). Lead in rice: analysis of baseline lead levels in market and field collected rice grains. Science of the Total Environment, 485, 428–434.CrossRefGoogle Scholar
  100. Ok, Y. S., Usman, A. R., Lee, S. S., El-Azeem, S. A. A., Choi, B., Hashimoto, Y., & Yang, J. E. (2011). Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere, 85, 677–682.CrossRefGoogle Scholar
  101. Park, J. H., Choppala, G., Lee, S. J., Bolan, N., Chung, J. W., & Edraki, M. (2013). Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils. Water, Air, & Soil Pollution, 224, 1–12.Google Scholar
  102. Puga, A. P., Abreu, C. A., Melo, L. C. A., & Beesley, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159, 86–93.CrossRefGoogle Scholar
  103. Qayyum, M. F., Rehman, M. Z., Ali, S., Rizwan, M., Naeem, A., Maqsood, M. A., Khalid, H., Rinklebe, J., & Ok, Y. S. (2017). Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere, 174, 515–523.CrossRefGoogle Scholar
  104. Rady, M. M., El-Yazal, M. A. S., Taie, H. A., & Ahmed, S. M. (2016). Response of wheat growth and productivity to exogenous polyamines under lead stress. Journal of Crop Science and Biotechnology, 19, 363–371.CrossRefGoogle Scholar
  105. Ramesar, N. S., Tavarez, M., Ebbs, S. D., & Sankaran, R. P. (2014). Transport and partitioning of lead in Indian mustard (Brassica juncea) and wheat (Triticum aestivum). Bioremediation Journal, 18, 345–355.CrossRefGoogle Scholar
  106. Rehman, M. Z., Rizwan, M., Ghafoor, A., Naeem, A., Ali, S., Sabir, M., & Qayyum, M. F. (2015). Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soil and its phyto-availability to wheat and rice under rotation. Environmental Science and Pollution Research, 22, 16897–16906.CrossRefGoogle Scholar
  107. Rehman, M. Z., Rizwan, M., Ali, S., Fatima, N., Yousaf, B., Naeem, A., Sabir, M., Ahmad, H. R., & Ok, Y. S. (2016). Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicology and Environmental Safety, 133, 218–225.CrossRefGoogle Scholar
  108. Rehman, M. Z., Rizwan, M., Ali, S., Sabir, M., & Sohail, M. I. (2017). Contrasting effects of organic and inorganic amendments on reducing lead toxicity in wheat. Bulletin of Environmental Contamination and Toxicology, 99, 642–647.CrossRefGoogle Scholar
  109. Rizwan, M., Ali, S., Ibrahim, M., Farid, M., Adrees, M., Bharwana, S. A., Rehman, M. Z., Qayyum, M. F., & Abbas, F. (2015). Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environmental Science and Pollution Research, 22, 15416–15431.CrossRefGoogle Scholar
  110. Rizwan, M., Meunier, J. D., Davidian, J. C., Pokrovsky, O. S., Bovet, N., & Keller, C. (2016a). Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environmental Science and Pollution Research, 23, 1414–1427.CrossRefGoogle Scholar
  111. Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Rehman, M. Z., Abbas, T., & OK, Y. S. (2016b). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research, 23, 2230–2248.CrossRefGoogle Scholar
  112. Rizwan, M., Ali, S., Adrees, M., Ibrahim, M., Tsang, D. C. W., Rehman, M. Z., Zahir, Z. A., Rinklebe, J., Tack, F. M. G., & Ok, Y. S. (2017a). A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere, 182, 90–105.CrossRefGoogle Scholar
  113. Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Adrees, M., Ibrahim, M., Rehman, M. Z., Farid, M., & Abbas, F. (2017b). Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. Journal of Hazardous Materials, 322, 2–16.CrossRefGoogle Scholar
  114. Rizwan, M., Ali, S., Abbas, T., Adrees, M., Zia-ur-Rehman, M., Ibrahim, M., Abbas, F., Qayyum, M. F., & Nawaz, R. (2018). Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. Journal of Environmental Management, 206, 676–683.CrossRefGoogle Scholar
  115. Saifullah, Ghafoor, A., Zia, M. H., Murtaza, G., Waraich, E. A., Bibi, S., & Srivastava, P. (2010). Comparison of organic and inorganic amendments for enhancing soil lead phytoextraction by wheat (Triticum aestivum L.). International Journal of Phytoremediation, 12, 633–649.CrossRefGoogle Scholar
  116. Saifullah, Khan, M. N., Iqbal, M., Naeem, A., Bibi, S., Waraich, E. A., & Dahlawi, S. (2016). Elemental sulfur improves growth and phytoremediative ability of wheat grown in lead-contaminated calcareous soil. International Journal of Phytoremediation, 18, 1022–1028.CrossRefGoogle Scholar
  117. Seneviratne, M., Rajakaruna, N., Rizwan, M., Madawala, H. M. S. P., Ok, Y. S., & Vithanage, M. (2017). Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-017-0005-8.
  118. Shafigh, M., Ghasemi-Fasaei, R., & Ronaghi, A. (2016). Influence of plant growth regulators and humic acid on the phytoremediation of lead by maize in a Pb-polluted calcareous soil. Archives of Agronomy and Soil Science, 62, 1733–1740.CrossRefGoogle Scholar
  119. Shi, Y., Huang, Z., Liu, X., Imran, S., Peng, L., Dai, R., & Deng, Y. (2016). Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator. Environmental Science and Pollution Research, 23, 6168–6178.CrossRefGoogle Scholar
  120. Singh, S., Srivastava, P. K., Kumar, D., Tripathi, D. K., Chauhan, D. K., & Prasad, S. M. (2015). Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L.) seedlings against lead and chromium stresses. Biocatalysis and Agricultural Biotechnology, 4, 286–295.CrossRefGoogle Scholar
  121. Stanislawska-Glubiak, E., Korzeniowska, J., & Kocon, A. (2015). Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils. Environmental Science and Pollution Research, 22, 4706–4714.CrossRefGoogle Scholar
  122. Tan, X., Liu, Y., Gu, Y., Zeng, G., Hu, X., Wang, X., Hu, X., Guo, Y., Zeng, X., & Sun, Z. (2015). Biochar amendment to lead-contaminated soil: Effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice. Environmental Toxicology and Chemisty, 34, 1962–1968.CrossRefGoogle Scholar
  123. Thakur, S., Singh, L., Zularisam, A. W., Sakinah, M., & Din, M. F. M. (2017). Lead induced oxidative stress and alteration in the activities of antioxidative enzymes in rice shoots. Biologia Plantarium, 61, 595–598.CrossRefGoogle Scholar
  124. Tian, T., Ali, B., Qin, Y., Malik, Z., Gill, R. A., Ali, S., & Zhou, W. (2014). Alleviation of lead toxicity by 5-aminolevulinic acid is related to elevated growth, photosynthesis, and suppressed ultrastructural damages in oilseed rape. BioMed Research International,, 2014, doi: 10.1155/2014/530642.Google Scholar
  125. Tripathi, D. K., Singh, V. P., Prasad, S. M., Dubey, N. K., Chauhan, D. K., & Rai, A. K. (2016). LIB spectroscopic and biochemical analysis to characterize lead toxicity alleviative nature of silicon in wheat (Triticum aestivum L.) seedlings. Journal of Photochemistry and Photobiology B: Biology, 154, 89–98.CrossRefGoogle Scholar
  126. Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164, 645–655.CrossRefGoogle Scholar
  127. Wang, H. H., Shan, X. Q., Wen, B., Owens, G., Fang, J., & Zhang, S. Z. (2007). Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environmental and Experimental Botany, 61, 246–253.CrossRefGoogle Scholar
  128. Wang, Z. W., Nan, Z. R., Wang, S. L., & Zhao, Z. J. (2011). Accumulation and distribution of cadmium and lead in wheat (Triticum aestivum L.) grown in contaminated soils from the oasis, north-west China. Journal of the Science of Food and Agriculture, 91, 377–384.CrossRefGoogle Scholar
  129. Wang, S., Wang, F., Gao, S., & Wang, X. (2016). Heavy metal accumulation in different rice cultivars as influenced by foliar application of Nano-silicon. Water. Air, & Soil Pollution, 227, 1–13.CrossRefGoogle Scholar
  130. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011, Article ID 402647.Google Scholar
  131. Xie, L. H., Tang, S. Q., Wei, X. J., Shao, G. N., Jiao, G. A., Sheng, Z. H., Luo, J., & Hu, P. S. (2017). The cadmium and lead content of the grain produced by leading Chinese rice cultivars. Food Chemistry, 217, 217–224.CrossRefGoogle Scholar
  132. Xing, W., Zhang, H., Scheckel, K. G., & Li, L. (2016). Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan province, China. Environmental Monitoring and Assessment, 188(23), 1–10.Google Scholar
  133. Xiong, F., Dong, Z., Yu, X., Zhou, L., & Wang, Z. (2013). Spatial distribution of Pb and its correlation at different grain positions among wheat varieties for specific end-uses. Agricultural Sciences, 4, 509–515.CrossRefGoogle Scholar
  134. Xu, P., Sun, C. X., Ye, X. Z., Xiao, W. D., Zhang, Q., & Wang, Q. (2016). The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology and Environmental Safety, 132, 94–100.CrossRefGoogle Scholar
  135. Xu, C., Chen, H. X., Xiang, Q., Zhu, H. H., Wang, S., Zhu, Q. H., Huang, D. Y., & Zhang, Y. Z. (2018). Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil–rice (Oryza sativa L.) system. Environmental Science and Pollution Research, 25, 1147–1156.CrossRefGoogle Scholar
  136. Yan, Y., Qi, F., Seshadri, B., Xu, Y., Hou, J., Ok, Y. S., Dong, X., Li, Q., Sun, X., Wang, L., & Bolan, N. (2016). Utilization of phosphorus loaded alkaline residue to immobilize lead in a shooting range soil. Chemosphere, 162, 315–323.CrossRefGoogle Scholar
  137. Yang, Y., Wei, X., Lu, J., You, J., Wang, W., & Shi, R. (2010). Lead-induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 73, 1982–1987.CrossRefGoogle Scholar
  138. Yang, Y., Zhang, Y., Wei, X., You, J., Wang, W., Lu, J., & Shi, R. (2011). Comparative antioxidative responses and proline metabolism in two wheat cultivars under short term lead stress. Ecotoxicology and Environmental Safety, 74, 733–740.Google Scholar
  139. Yang, R., Liu, L., Zan, S., Tang, J., & Chen, X. (2012). Plant species coexistence alleviates the impacts of lead on Zea mays L. Journal of Environmental Sciences, 24, 396–401.CrossRefGoogle Scholar
  140. Yang, J., Liu, Z., Wan, X., Zheng, G., Yang, J., Zhang, H., Guo, L., Wang, X., Zhou, X., Guo, Q., & Xu, R. (2016). Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant. Ecotoxicology and Environmental Safety, 128, 206–212.CrossRefGoogle Scholar
  141. Younis, U., Malik, S. A., Rizwan, M., Qayyum, M. F., Ok, Y. S., Shah, M. H. R., Rehman, R. A., & Ahmad, N. (2016). Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of Cd uptake and physiological and biochemical attributes. Environmental Science and Pollution Research, 23, 21385–21394.CrossRefGoogle Scholar
  142. Yousaf, B., Liu, G., Abbas, Q., Wang, R., Imtiaz, M., & Rehman, M. Z. (2017). Investigating the uptake and acquisition of potentially toxic elements in plants and health risks associated with the addition of fresh biowaste amendments to industrially contaminated soil. Land Degradation & Development, 28, 2596–2607.Google Scholar
  143. Yousaf, B., Liu, G., Abbas, Q., Ullah, H., Wang, R., Rehman, M. Z., & Niu, Z. (2018). Comparative effects of biochar-nanosheets and conventional organic-amendments on health risks abatement of potentially toxic elements via consumption of wheat grown on industrially contaminated-soil. Chemosphere, 192, 161–170.CrossRefGoogle Scholar
  144. Zhang, H. H., Tang, M., Chen, H., Zheng, C. L., & Niu, Z. C. (2010). Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. European Journal of Soil Biology, 46, 306–311.CrossRefGoogle Scholar
  145. Zhang, A., Bian, R., Li, L., Wang, X., Zhao, Y., Hussain, Q., & Pan, G. (2015). Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy. Environmental Science and Pollution Research, 22, 18977–18986.Google Scholar
  146. Zhao, M., Liu, Y., Li, H., Cai, Y., Wang, M. K., Chen, Y., Xie, T., & Wang, G. (2017). Effects and mechanisms of meta-sodium silicate amendments on lead uptake and accumulation by rice. Environmental Science and Pollution Research, 24, 21700–21709.CrossRefGoogle Scholar
  147. Zheng, R., Chen, Z., Cai, C., Wang, X., Huang, Y., Xiao, B., & Sun, G. (2013). Effect of biochars from rice husk, bran, and straw on heavy metal uptake by pot-grown wheat seedling in a historically contaminated soil. BioResources, 8, 5965–5982.CrossRefGoogle Scholar
  148. Zhu, S., Ma, X., Guo, R., Ai, S., Liu, B., Zhang, W., & Zhang, Y. (2016). A field study on heavy metals phytoattenuation potential of monocropping and intercropping of maize and/or legumes in weakly alkaline soils. International Journal of Phytoremediation, 18, 1014–1021.CrossRefGoogle Scholar
  149. Zou, L., Zhang, S., Duan, D., Liang, X., Shi, J., Xu, J., & Tang, X. (2018). Effects of ferrous sulfate amendment and water management on rice growth and metal (loid) accumulation in arsenic and lead co-contaminated soil. Environmental Science and Pollution Research.  https://doi.org/10.1007/s11356-017-1175-8.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental Sciences and EngineeringGovernment College UniversityFaisalabadPakistan
  2. 2.Institute of Soil and Environmental SciencesUniversity of AgricultureFaisalabadPakistan
  3. 3.Department of Bioinformatics & BiotechnologyGovernment College UniversityFaisalabadPakistan

Personalised recommendations