Advertisement

Organics Wastewater Degradation by a Mesoporous Chromium-Functionalized γ-Al2O3 with H2O2 Assistance

  • Jianjun Zhao
  • Muxin Liu
  • Mengwei Liang
  • Bosheng Ding
  • Kun Ding
  • Yupeng Pan
Article
  • 117 Downloads

Abstract

In this study, a mesoporous chromium-functionalized γ-Al2O3 (Cr/γ-Al2O3) catalyst was prepared by an impregnation method, and the catalytic activity was evaluated by the degradation of organics wastewater. The prepared catalyst was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, nitrogen adsorption-desorption experiments, and scanning electron microscopy. The characterization results confirmed that the pores in the Cr/γ-Al2O3 catalyst distributed broadly in the mesoporous region, and the active chromium species were highly dispersed on the catalyst surface. The catalytic activity tests showed that the Cr/γ-Al2O3 catalyst exhibited a superior performance for the degradation of organics wastewater with H2O2 assistance. And the methylene blue (MB) disappeared within 20 min and the COD removal reached 76.5% within 40 min for the MB-simulated wastewater; for the phenol-simulated wastewater, the phenol removal was above 95% and the corresponding COD removal reached 71% within 40 min. Such an excellent catalytic performance demonstrates that the Cr/γ-Al2O3 catalyst has a potential application in the degradation of complex organics wastewater simultaneously.

Keywords

Cr/γ-Al2O3 catalyst Catalytic degradation Organics wastewater COD removal 

Notes

Funding information

The authors acknowledge the support of the Natural Science Research Key Project of the Anhui Provincial Department of Education (Grant KJ2015A231).

References

  1. Ayari, F., Mhamdi, M., Delahay, G., & Ghorbel, A. (2010). Sol-gel derived mesoporous Cr/Al2O3 catalysts for SCR of NO by ammonia. Journal of Porous Materials, 17(3), 265–274.CrossRefGoogle Scholar
  2. Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572.CrossRefGoogle Scholar
  3. Bokare, A. D., & Choi, W. (2010). Chromate-induced activation of hydrogen peroxide for oxidative degradation of aqueous organic pollutants. Environmental Science & Technology, 44(19), 7232–7237.CrossRefGoogle Scholar
  4. Bokare, A. D., & Choi, W. (2011). Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle. Environmental Science & Technology, 45(21), 9332–9338.CrossRefGoogle Scholar
  5. Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135.CrossRefGoogle Scholar
  6. Chen, M. L., Cho, K. Y., & Oh, W. C. (2010). Synthesis and photocatalytic behaviors of Cr2O3-CNT/TiO2 composite materials under visible light. Journal of Materials Science, 45(24), 6611–6616.CrossRefGoogle Scholar
  7. Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chemical Engineering Journal, 284, 582–598.CrossRefGoogle Scholar
  8. Cherian, M., Rao, M. S., Manoharan, S. S., Pradhan, A., & Deo, G. (2002). Influence of the fuel used in the microwave synthesis of Cr2O3. Topics in Catalysis, 18(3–4), 225–230.CrossRefGoogle Scholar
  9. Dewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M. A. (2017). New perspectives for advanced oxidation processes. Journal of Environmental Management, 195, 93–99.CrossRefGoogle Scholar
  10. Gaspar, A. B., Perez, C. A. C., & Dieguez, L. C. (2005). Characterization of Cr/SiO2 catalysts and ethylene polymerization by XPS. Applied Surface Science, 252(4), 939–949.CrossRefGoogle Scholar
  11. Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3–4), 501–551.CrossRefGoogle Scholar
  12. Jin, Z., Xiao, M. D., Bao, Z. H., Wang, P., & Wang, J. F. (2012). A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles. Angewandte Chemie International Edition, 51(26), 6406–6410.CrossRefGoogle Scholar
  13. Kim, D. S., & Wachs, I. E. (1993). Surface chemistry of supported chromium oxide catalysts. Journal of Catalysis, 142(1), 166–171.CrossRefGoogle Scholar
  14. Li, J., Xu, L., Sun, P., Zhai, P., Chen, X., Zhang, H., Zhang, Z., & Zhu, W. (2017). Novel application of red mud: Facile hydrothermal-thermal conversion synthesis of hierarchical porous AlOOH and Al2O3 microspheres as adsorbents for dye removal. Chemical Engineering Journal, 321, 622–634.CrossRefGoogle Scholar
  15. Linares, N., Silvestre-Albero, A. M., Serrano, E., Silvestre-Albero, J., & García-Martínez, J. (2014). Mesoporous materials for clean energy technologies. Chemical Society Reviews, 43, 7681–7717.CrossRefGoogle Scholar
  16. Liu, B., Sindelar, P., Fang, Y., Hasebe, K., & Terano, M. (2005). Correlation of oxidation states of surface chromium species with ethylene polymerization activity for Phillips CrOx/SiO2 catalysts modified by Al-alkyl cocatalyst. Journal of Molecular Catalysis A: Chemical, 238(1–2), 142–150.Google Scholar
  17. Liu, T., Li, B., Hao, Y., Han, F., Zhang, L., & Hu, L. (2015). A general method to diverse silver/mesoporous-metal-oxidenanocomposites with plasmon-enhanced photocatalytic activity. Applied Catalysis B: Environmental, 165, 378–388.CrossRefGoogle Scholar
  18. Lu, M., Yao, Y., Gao, L., Mo, D., Lin, F., & Lu, S. (2015). Continuous treatment of phenol over an Fe2O3/γ-Al2O3 catalyst in a fixed-bed reactor. Water Air & Soil Pollution, 226(4), 87–99.CrossRefGoogle Scholar
  19. Naik, B., Moitra, D., Dayananda, D., Hazra, S., Ghosh, B. K., Prasad, S. V., & Ghosh, N. N. (2016). A facile method for preparation of TiO2 nanoparticle loaded mesoporous γ-Al2O3: an efficient but cost-effective catalyst for dye degradation. Journal of Nanoscience and Nanotechnology, 16(8), 8544–8549.CrossRefGoogle Scholar
  20. Pacewska, B., Kluk-Płoskońska, O., & Szychowski, D. (2006). Influence of aluminium precursor on physico-chemical properties of aluminium hydroxides and oxides: Part III. Al2(SO4)3·18H2O. Journal of Thermal Analysis and Calorimetry, 87(2), 383–393.CrossRefGoogle Scholar
  21. Park, P. W., & Ledford, J. S. (1997). Characterization and CH4 oxidation activity of Cr/Al2O3 catalysts. Langmuir, 13(10), 2726–2730.CrossRefGoogle Scholar
  22. Peng, L., Xu, X., Lv, Z., Song, J., He, M., Wang, Q., Yan, L., Li, Y., & Li, Z. (2012). Thermal and morphological study of Al2O3 nanofibers derived from boehmite precursor. Journal of Thermal Analysis and Calorimetry, 110(2), 749–754.CrossRefGoogle Scholar
  23. Perez-Benito, J. F., & Arias, C. (1997). A kinetic study of the chromium(VI)-hydrogen peroxide reaction. Role of the diperoxochromate(VI) intermediates. Journal of Physical Chemistry A, 101(26), 4726–4733.CrossRefGoogle Scholar
  24. Puurunen, R. L., & Weckhuysen, B. M. (2002). Spectroscopic study on the irreversible deactivation of chromia/alumina dehydrogenation catalysts. Journal of Catalysis, 210(2), 418–430.CrossRefGoogle Scholar
  25. Qian, X., Ren, M., Zhu, Y., Yue, D., Han, Y., Jia, J., & Zhao, Y. (2017). Visible light assisted heterogeneous Fenton-like degradation of organic pollutant via α-FeOOH/mesoporous carbon composites. Environmental Science & Technology, 51(7), 3993–4000.CrossRefGoogle Scholar
  26. Rahim, P. S., Bayrami, A., Abdul Aziz, A. R., Wan Daud, W. M. A., & Shafeeyan, M. S. (2016). Ultrasound and UV assisted Fenton treatment of recalcitrant wastewaters using transition metal-substituted-magnetite nanoparticles. Journal of Molecular Liquids, 222, 1076–1084.CrossRefGoogle Scholar
  27. Saadoun, L., Ayllon, J. A., Jimenez-Becerril, J., & Peral, J. (2000). Synthesis and photocatalytic activity of mesoporous anatase prepared from tetrabutylammonium-titania composites. Materials Research Bulletin, 35(2), 193–202.CrossRefGoogle Scholar
  28. Shukla, P., Wang, S., Sun, H., Ang, H. M., & Tadé, M. (2010). Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. Chemical Engineering Journal, 164(1), 255–260.CrossRefGoogle Scholar
  29. Su, J., Zhang, Y., Xu, S., Wang, S., Ding, H., Pan, S., Wang, G., Li, G., & Zhao, H. (2014). Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions. Nanoscale, 6(10), 5181–5192.CrossRefGoogle Scholar
  30. Sui, M., & She, L. (2013). Review on research and application of mesoporous transitional metal oxides in water treatment. Frontiers of Environmental Science & Engineering, 7(6), 795–802.CrossRefGoogle Scholar
  31. Sun, L. B., Yang, J., Kou, J. H., Gu, F. N., Chun, Y., Wang, Y., Zhu, J. H., & Zou, Z. G. (2008). One-pot synthesis of potassium-functionalized mesoporous gamma-alumina: a solid superbase. Angewandte Chemie International Edition, 47(18), 3418–3421.CrossRefGoogle Scholar
  32. Tsou, T. C., & Yang, J. L. (1996). Formation of reactive oxygen species and DNA strand breakage during interaction of chromium(III) and hydrogen peroxide in vitro: evidence for a chromium(III)-mediated Fenton-like reaction. Chemico-Biological Interactions, 102(3), 133–153.CrossRefGoogle Scholar
  33. Wang, J., Dong, S., Yu, C., Han, X., Guo, J., & Sun, J. (2017). An efficient MoO3 catalyst for in-practical degradation of dye wastewater under room conditions. Catalysis Communications, 92, 100–104.CrossRefGoogle Scholar
  34. Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762–787.CrossRefGoogle Scholar
  35. Yang, J., Hu, R., Meng, W., & Du, Y. (2016). A novel p-LaFeO3/n-Ag3PO4 heterojunction photocatalyst for phenol degradation under visible light irradiation. Chemical Communications, 52(12), 2620–2623.CrossRefGoogle Scholar
  36. Yang, Q. (2011). Synthesis of γ-Al2O3 nanowires through a boehmite precursor route. Bulletin of Materials Science, 34(2), 239–244.CrossRefGoogle Scholar
  37. Yang, X. J., Xu, X. M., Xu, J., & Han, Y. F. (2013). Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. Journal of the American Chemical Society, 135(43), 16058–16061.CrossRefGoogle Scholar
  38. Zerdazi, R., Boutraa, M., Melizi, A., Bencheikh lehocine, M., & Meniai, A. H. (2012). Application of respirometry in the assessment of chromium contaminated waste waters treatment. Energy Procedia, 18, 438–448.CrossRefGoogle Scholar
  39. Zha, Y., Zhou, Z., He, H., Wang, T., & Luo, L. (2016). Nanoscale zero-valent iron incorporated with nanomagnetic diatomite for catalytic degradation of methylene blue in heterogeneous Fenton system. Water Science and Technology, 73(11), 2815–2823.CrossRefGoogle Scholar
  40. Zhang, L., Xu, D., Hu, C., & Shi, Y. (2017). Framework Cu-doped AlPO4 as an effective Fenton-like catalyst for bisphenol A degradation. Applied Catalysis B: Environmental, 207, 9–16.CrossRefGoogle Scholar
  41. Zhao, J., Ding, K., & Ding, B. (2017). The effect of polyethylene glycol (PEG) modification on Fe dispersal and the catalytic degradation of phenol wastewater. Water, Air, and Soil Pollution, 228, 442–451.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials and Chemical EngineeringBengbu UniversityBengbuChina

Personalised recommendations