Organics Wastewater Degradation by a Mesoporous Chromium-Functionalized γ-Al2O3 with H2O2 Assistance

  • Jianjun Zhao
  • Muxin Liu
  • Mengwei Liang
  • Bosheng Ding
  • Kun Ding
  • Yupeng Pan
Article
  • 71 Downloads

Abstract

In this study, a mesoporous chromium-functionalized γ-Al2O3 (Cr/γ-Al2O3) catalyst was prepared by an impregnation method, and the catalytic activity was evaluated by the degradation of organics wastewater. The prepared catalyst was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, nitrogen adsorption-desorption experiments, and scanning electron microscopy. The characterization results confirmed that the pores in the Cr/γ-Al2O3 catalyst distributed broadly in the mesoporous region, and the active chromium species were highly dispersed on the catalyst surface. The catalytic activity tests showed that the Cr/γ-Al2O3 catalyst exhibited a superior performance for the degradation of organics wastewater with H2O2 assistance. And the methylene blue (MB) disappeared within 20 min and the COD removal reached 76.5% within 40 min for the MB-simulated wastewater; for the phenol-simulated wastewater, the phenol removal was above 95% and the corresponding COD removal reached 71% within 40 min. Such an excellent catalytic performance demonstrates that the Cr/γ-Al2O3 catalyst has a potential application in the degradation of complex organics wastewater simultaneously.

Keywords

Cr/γ-Al2O3 catalyst Catalytic degradation Organics wastewater COD removal 

References

  1. Ayari, F., Mhamdi, M., Delahay, G., & Ghorbel, A. (2010). Sol-gel derived mesoporous Cr/Al2O3 catalysts for SCR of NO by ammonia. Journal of Porous Materials, 17(3), 265–274.CrossRefGoogle Scholar
  2. Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572.CrossRefGoogle Scholar
  3. Bokare, A. D., & Choi, W. (2010). Chromate-induced activation of hydrogen peroxide for oxidative degradation of aqueous organic pollutants. Environmental Science & Technology, 44(19), 7232–7237.CrossRefGoogle Scholar
  4. Bokare, A. D., & Choi, W. (2011). Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle. Environmental Science & Technology, 45(21), 9332–9338.CrossRefGoogle Scholar
  5. Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135.CrossRefGoogle Scholar
  6. Chen, M. L., Cho, K. Y., & Oh, W. C. (2010). Synthesis and photocatalytic behaviors of Cr2O3-CNT/TiO2 composite materials under visible light. Journal of Materials Science, 45(24), 6611–6616.CrossRefGoogle Scholar
  7. Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chemical Engineering Journal, 284, 582–598.CrossRefGoogle Scholar
  8. Cherian, M., Rao, M. S., Manoharan, S. S., Pradhan, A., & Deo, G. (2002). Influence of the fuel used in the microwave synthesis of Cr2O3. Topics in Catalysis, 18(3–4), 225–230.CrossRefGoogle Scholar
  9. Dewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M. A. (2017). New perspectives for advanced oxidation processes. Journal of Environmental Management, 195, 93–99.CrossRefGoogle Scholar
  10. Gaspar, A. B., Perez, C. A. C., & Dieguez, L. C. (2005). Characterization of Cr/SiO2 catalysts and ethylene polymerization by XPS. Applied Surface Science, 252(4), 939–949.CrossRefGoogle Scholar
  11. Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3–4), 501–551.CrossRefGoogle Scholar
  12. Jin, Z., Xiao, M. D., Bao, Z. H., Wang, P., & Wang, J. F. (2012). A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles. Angewandte Chemie International Edition, 51(26), 6406–6410.CrossRefGoogle Scholar
  13. Kim, D. S., & Wachs, I. E. (1993). Surface chemistry of supported chromium oxide catalysts. Journal of Catalysis, 142(1), 166–171.CrossRefGoogle Scholar
  14. Li, J., Xu, L., Sun, P., Zhai, P., Chen, X., Zhang, H., Zhang, Z., & Zhu, W. (2017). Novel application of red mud: Facile hydrothermal-thermal conversion synthesis of hierarchical porous AlOOH and Al2O3 microspheres as adsorbents for dye removal. Chemical Engineering Journal, 321, 622–634.CrossRefGoogle Scholar
  15. Linares, N., Silvestre-Albero, A. M., Serrano, E., Silvestre-Albero, J., & García-Martínez, J. (2014). Mesoporous materials for clean energy technologies. Chemical Society Reviews, 43, 7681–7717.CrossRefGoogle Scholar
  16. Liu, B., Sindelar, P., Fang, Y., Hasebe, K., & Terano, M. (2005). Correlation of oxidation states of surface chromium species with ethylene polymerization activity for Phillips CrOx/SiO2 catalysts modified by Al-alkyl cocatalyst. Journal of Molecular Catalysis A: Chemical, 238(1–2), 142–150.Google Scholar
  17. Liu, T., Li, B., Hao, Y., Han, F., Zhang, L., & Hu, L. (2015). A general method to diverse silver/mesoporous-metal-oxidenanocomposites with plasmon-enhanced photocatalytic activity. Applied Catalysis B: Environmental, 165, 378–388.CrossRefGoogle Scholar
  18. Lu, M., Yao, Y., Gao, L., Mo, D., Lin, F., & Lu, S. (2015). Continuous treatment of phenol over an Fe2O3/γ-Al2O3 catalyst in a fixed-bed reactor. Water Air & Soil Pollution, 226(4), 87–99.CrossRefGoogle Scholar
  19. Naik, B., Moitra, D., Dayananda, D., Hazra, S., Ghosh, B. K., Prasad, S. V., & Ghosh, N. N. (2016). A facile method for preparation of TiO2 nanoparticle loaded mesoporous γ-Al2O3: an efficient but cost-effective catalyst for dye degradation. Journal of Nanoscience and Nanotechnology, 16(8), 8544–8549.CrossRefGoogle Scholar
  20. Pacewska, B., Kluk-Płoskońska, O., & Szychowski, D. (2006). Influence of aluminium precursor on physico-chemical properties of aluminium hydroxides and oxides: Part III. Al2(SO4)3·18H2O. Journal of Thermal Analysis and Calorimetry, 87(2), 383–393.CrossRefGoogle Scholar
  21. Park, P. W., & Ledford, J. S. (1997). Characterization and CH4 oxidation activity of Cr/Al2O3 catalysts. Langmuir, 13(10), 2726–2730.CrossRefGoogle Scholar
  22. Peng, L., Xu, X., Lv, Z., Song, J., He, M., Wang, Q., Yan, L., Li, Y., & Li, Z. (2012). Thermal and morphological study of Al2O3 nanofibers derived from boehmite precursor. Journal of Thermal Analysis and Calorimetry, 110(2), 749–754.CrossRefGoogle Scholar
  23. Perez-Benito, J. F., & Arias, C. (1997). A kinetic study of the chromium(VI)-hydrogen peroxide reaction. Role of the diperoxochromate(VI) intermediates. Journal of Physical Chemistry A, 101(26), 4726–4733.CrossRefGoogle Scholar
  24. Puurunen, R. L., & Weckhuysen, B. M. (2002). Spectroscopic study on the irreversible deactivation of chromia/alumina dehydrogenation catalysts. Journal of Catalysis, 210(2), 418–430.CrossRefGoogle Scholar
  25. Qian, X., Ren, M., Zhu, Y., Yue, D., Han, Y., Jia, J., & Zhao, Y. (2017). Visible light assisted heterogeneous Fenton-like degradation of organic pollutant via α-FeOOH/mesoporous carbon composites. Environmental Science & Technology, 51(7), 3993–4000.CrossRefGoogle Scholar
  26. Rahim, P. S., Bayrami, A., Abdul Aziz, A. R., Wan Daud, W. M. A., & Shafeeyan, M. S. (2016). Ultrasound and UV assisted Fenton treatment of recalcitrant wastewaters using transition metal-substituted-magnetite nanoparticles. Journal of Molecular Liquids, 222, 1076–1084.CrossRefGoogle Scholar
  27. Saadoun, L., Ayllon, J. A., Jimenez-Becerril, J., & Peral, J. (2000). Synthesis and photocatalytic activity of mesoporous anatase prepared from tetrabutylammonium-titania composites. Materials Research Bulletin, 35(2), 193–202.CrossRefGoogle Scholar
  28. Shukla, P., Wang, S., Sun, H., Ang, H. M., & Tadé, M. (2010). Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. Chemical Engineering Journal, 164(1), 255–260.CrossRefGoogle Scholar
  29. Su, J., Zhang, Y., Xu, S., Wang, S., Ding, H., Pan, S., Wang, G., Li, G., & Zhao, H. (2014). Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions. Nanoscale, 6(10), 5181–5192.CrossRefGoogle Scholar
  30. Sui, M., & She, L. (2013). Review on research and application of mesoporous transitional metal oxides in water treatment. Frontiers of Environmental Science & Engineering, 7(6), 795–802.CrossRefGoogle Scholar
  31. Sun, L. B., Yang, J., Kou, J. H., Gu, F. N., Chun, Y., Wang, Y., Zhu, J. H., & Zou, Z. G. (2008). One-pot synthesis of potassium-functionalized mesoporous gamma-alumina: a solid superbase. Angewandte Chemie International Edition, 47(18), 3418–3421.CrossRefGoogle Scholar
  32. Tsou, T. C., & Yang, J. L. (1996). Formation of reactive oxygen species and DNA strand breakage during interaction of chromium(III) and hydrogen peroxide in vitro: evidence for a chromium(III)-mediated Fenton-like reaction. Chemico-Biological Interactions, 102(3), 133–153.CrossRefGoogle Scholar
  33. Wang, J., Dong, S., Yu, C., Han, X., Guo, J., & Sun, J. (2017). An efficient MoO3 catalyst for in-practical degradation of dye wastewater under room conditions. Catalysis Communications, 92, 100–104.CrossRefGoogle Scholar
  34. Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762–787.CrossRefGoogle Scholar
  35. Yang, J., Hu, R., Meng, W., & Du, Y. (2016). A novel p-LaFeO3/n-Ag3PO4 heterojunction photocatalyst for phenol degradation under visible light irradiation. Chemical Communications, 52(12), 2620–2623.CrossRefGoogle Scholar
  36. Yang, Q. (2011). Synthesis of γ-Al2O3 nanowires through a boehmite precursor route. Bulletin of Materials Science, 34(2), 239–244.CrossRefGoogle Scholar
  37. Yang, X. J., Xu, X. M., Xu, J., & Han, Y. F. (2013). Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants. Journal of the American Chemical Society, 135(43), 16058–16061.CrossRefGoogle Scholar
  38. Zerdazi, R., Boutraa, M., Melizi, A., Bencheikh lehocine, M., & Meniai, A. H. (2012). Application of respirometry in the assessment of chromium contaminated waste waters treatment. Energy Procedia, 18, 438–448.CrossRefGoogle Scholar
  39. Zha, Y., Zhou, Z., He, H., Wang, T., & Luo, L. (2016). Nanoscale zero-valent iron incorporated with nanomagnetic diatomite for catalytic degradation of methylene blue in heterogeneous Fenton system. Water Science and Technology, 73(11), 2815–2823.CrossRefGoogle Scholar
  40. Zhang, L., Xu, D., Hu, C., & Shi, Y. (2017). Framework Cu-doped AlPO4 as an effective Fenton-like catalyst for bisphenol A degradation. Applied Catalysis B: Environmental, 207, 9–16.CrossRefGoogle Scholar
  41. Zhao, J., Ding, K., & Ding, B. (2017). The effect of polyethylene glycol (PEG) modification on Fe dispersal and the catalytic degradation of phenol wastewater. Water, Air, and Soil Pollution, 228, 442–451.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials and Chemical EngineeringBengbu UniversityBengbuChina

Personalised recommendations