Skip to main content

Advertisement

Log in

Effective Removal of Toxic Heavy Metal Ions from Aqueous Solution by CaCO3 Microparticles

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Heavy metals are a common contaminant in water supplies and pose a variety of serious health risks to nearby human populations. A promising approach to heavy metal decontamination is the sequestration of heavy metal ions in porous materials; however, current technologies involve materials which can be difficult to synthesize, are high-cost, or are themselves potentially toxic. Herein, we demonstrate that rapidly synthesized calcium carbonate (CaCO3) microparticles can effectively remove high quantities of Pb2+, Cd2+, and Cu2+ ions (1869, 1320, and 1293 mg per gram of CaCO3 microparticles, respectively) from aqueous media. The CaCO3 microparticles were characterized with powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Brunauer–Emmett–Teller (BET) N2 sorption–desorption. It was found that the Ca2+ ions of the microparticles were replaced by the heavy metal ions, leading to partially recrystallized nanoparticles of new compositional phases such as cerussite (PbCO3). The adsorption, surface dissolution/re-precipitation, and nucleation/crystal growth mechanisms were determined by investigating the Ca2+ released, along with the changes to particle morphology and crystal structure. Importantly, this study demonstrates that the porous CaCO3 microparticles performed well in a system with multiple heavy metal ion species: 100% of Cu2+, 97.5% of Pb2+, and 37.0% Cd2+ were removed from an aqueous solution of all cations with initial individual metal concentrations of 50 mg/L and 1.5 g/L of CaCO3 microparticles. At this concentration, the CaCO3 microparticles significantly outperformed activated carbon. These results help to establish CaCO3 microparticles as a promising low-cost and scalable technology for removing heavy metal ions from contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Rashdi, B., Johnson, D., & Hilal, N. (2013). Removal of heavy metal ions by nanofiltration. Desalination, 315, 2–17.

    Article  CAS  Google Scholar 

  • Amuda, O., Giwa, A., & Bello, I. (2007). Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochemical Engineering Journal, 36, 174–181.

    Article  CAS  Google Scholar 

  • Annadurai, G., Juang, R., & Lee, D. (2003). Adsorption of heavy metals from water using banana and orange peels. Water Science and Technology, 47, 185–190.

    CAS  Google Scholar 

  • Arshadi, M., Amiri, M., & Mousavi, S. (2014). Kinetic, equilibrium and thermodynamic investigations of Ni (II), Cd (II), Cu (II) and Co (II) adsorption on barley straw ash. Water Resources and Industry, 6, 1–17.

    Article  Google Scholar 

  • Aziz, H. A., Adlan, M. N., & Ariffin, K. S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: post treatment by high quality limestone. Bioresource Technology, 99, 1578–1583.

    Article  CAS  Google Scholar 

  • Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N., & Matis, K. (2003). Hybrid flotation-membrane filtration process for the removal of heavy metal ions from wastewater. Water Research, 37, 4018–4026.

    Article  Google Scholar 

  • Boparai, H. K., Joseph, M., & O’Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186, 458–465.

    Article  CAS  Google Scholar 

  • Bushong, E. J., & Yoder, C. H. (2009). The synthesis and characterization of rouaite, a copper hydroxy nitrate. An integrated first-year laboratory project. Journal of Chemical Education, 86, 80.

    Article  CAS  Google Scholar 

  • Cai, G. B., Zhao, G. X., Wang, X. K., & Yu, S. H. (2010). Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water. The Journal of Physical Chemistry C, 114, 12948–12954.

    Article  CAS  Google Scholar 

  • Celis, R., Hermosin, M. C., & Cornejo, J. (2000). Heavy metal adsorption by functionalized clays. Environmental Science & Technology, 34, 4593–4599.

    Article  CAS  Google Scholar 

  • Charerntanyarak, L. (1999). Heavy metals removal by chemical coagulation and precipitation. Water Science and Technology, 39, 135–138.

    CAS  Google Scholar 

  • Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 280, 309–314.

    Article  CAS  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92, 407–418.

    Article  CAS  Google Scholar 

  • Gamsjäger, H., Fluch, A., & Swinehart, J. H. (1984). The effect of potential aqueous pollutants on the solubility of Pb2+ in cerussite-calcite phase. Monatshefte für Chemie/Chemical Monthly, 115, 251–259.

    Article  Google Scholar 

  • Garcıa-Sánchez, A., & Alvarez-Ayuso, E. (2002). Sorption of Zn, Cd and Cr on calcite. Application to purification of industrial wastewaters. Minerals Engineering, 15, 539–547.

    Article  Google Scholar 

  • Godelitsas, A., Astilleros, J. M., Hallam, K., Harissopoulos, S., & Putnis, A. (2003). Interaction of calcium carbonates with lead in aqueous solutions. Environmental Science & Technology, 37, 3351–3360.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Agarwal, S., & Saleh, T. A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. Journal of Hazardous Materials, 185, 17–23.

    Article  CAS  Google Scholar 

  • Ho, Y. S., Wase, D. J., & Forster, C. (1996). Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environmental Technology, 17, 71–77.

    Article  CAS  Google Scholar 

  • Hong, K. S., Lee, H. M., Bae, J. S., Ha, M. G., Jin, J. S., Hong, T. E., Kim, J. P., & Jeong, E. D. (2011). Removal of heavy metal ions by using calcium carbonate extracted from starfish treated by protease and amylase. Journal of Analytical Science and Technology, 2, 75–82.

    Article  CAS  Google Scholar 

  • Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211, 317–331.

    Article  Google Scholar 

  • Jambor, J. L., Puziewicz, J., & Roberts, A. C. (1999). New mineral names. American Mineralogist, 84, 685–688.

    CAS  Google Scholar 

  • Kobya, M., Demirbas, E., Senturk, E., & Ince, M. (2005). Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology, 96, 1518–1521.

    Article  CAS  Google Scholar 

  • Lin, S. H., Lai, S. L., & Leu, H. G. (2000). Removal of heavy metals from aqueous solution by chelating resin in a multistage adsorption process. Journal of Hazardous Materials, 76, 139–153.

    Article  CAS  Google Scholar 

  • Ma, X., Li, L., Yang, L., Su, C., Wang, K., & Jiang, K. (2012a). Preparation of hybrid CaCO3-pepsin hemisphere with ordered hierarchical structure and the application for removal of heavy metal ions. Journal of Crystal Growth, 338, 272–279.

    Article  CAS  Google Scholar 

  • Ma, X., Li, L., Yang, L., Su, C., Wang, K., Yuan, S., & Zhou, J. (2012b). Adsorption of heavy metal ions using hierarchical CaCO3–maltose meso/macroporous hybrid materials: adsorption isotherms and kinetic studies. Journal of Hazardous Materials, 209, 467–477.

    Article  Google Scholar 

  • Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2002). Chemical precipitation of heavy metals from acid mine drainage. Water Research, 36, 4757–4764.

    Article  CAS  Google Scholar 

  • Mohammadifard, H., & Amiri, M. C. (2017). Evaluating Cu (II) removal from aqueous solutions with response surface methodology by using novel synthesized CaCO3 nanoparticles prepared in a colloidal gas aphron system. Chemical Engineering Communications, 204, 476–484.

    Article  CAS  Google Scholar 

  • Okoye, A., Ejikeme, P., & Onukwuli, O. (2010). Lead removal from wastewater using fluted pumpkin seed shell activated carbon: adsorption modeling and kinetics. International Journal of Environmental Science & Technology, 7, 793–800.

    Article  CAS  Google Scholar 

  • Pickering, W. (1983). Extraction of copper, lead, zinc or cadmium ions sorbed on calcium carbonate. Water, Air, & Soil Pollution, 20, 299–309.

    Article  CAS  Google Scholar 

  • Reed, B. E., & Matsumoto, M. R. (1993). Modeling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions. Separation Science and Technology, 28, 2179–2195.

    Article  CAS  Google Scholar 

  • Ren, C., Ding, X., Li, W., Wu, H., & Yang, H. (2017). Highly efficient adsorption of heavy metals onto novel magnetic porous composites modified with amino groups. Journal of Chemical & Engineering Data, 62, 1865–1875.

    Article  CAS  Google Scholar 

  • Ricco, R., Konstas, K., Styles, M. J., Richardson, J. J., Babarao, R., Suzuki, K., Scopece, P., & Falcaro, P. (2015). Lead (II) uptake by aluminium based magnetic framework composites (MFCs) in water. Journal of Materials Chemistry A, 3, 19822–19831.

    Article  CAS  Google Scholar 

  • Richardson, J. J., Maina, J. W., Ejima, H., Hu, M., Guo, J., Choy, M. Y., Gunawan, S. T., Lybaert, L., Hagemeyer, C. E., & De Geest, B. G. (2015). Versatile loading of diverse cargo into functional polymer capsules. Advanced Science, 2, 1400007.

    Article  Google Scholar 

  • Saha, D., Barakat, S., Van Bramer, S. E., Nelson, K. A., Hensley, D. K., & Chen, J. (2016). Noncompetitive and competitive adsorption of heavy metals in sulfur-functionalized ordered mesoporous carbon. ACS Applied Materials & Interfaces, 8, 34132–34142.

    Article  CAS  Google Scholar 

  • Sdiri, A., & Higashi, T. (2013). Simultaneous removal of heavy metals from aqueous solution by natural limestones. Applied Water Science, 3, 29–39.

    Article  CAS  Google Scholar 

  • Sdiri, A., Higashi, T., Chaabouni, R., & Jamoussi, F. (2012a). Competitive removal of heavy metals from aqueous solutions by montmorillonitic and calcareous clays. Water, Air, & Soil Pollution, 223, 1191–1204.

    Article  CAS  Google Scholar 

  • Sdiri, A., Higashi, T., Jamoussi, F., & Bouaziz, S. (2012b). Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. Journal of Environmental Management, 93, 245–253.

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2006). Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chemical Engineering Journal, 117, 79–91.

    Article  CAS  Google Scholar 

  • Stafiej, A., & Pyrzynska, K. (2007). Adsorption of heavy metal ions with carbon nanotubes. Separation and Purification Technology, 58, 49–52.

    Article  CAS  Google Scholar 

  • Tavakoli, O., Goodarzi, V., Saeb, M. R., Mahmoodi, N. M., & Borja, R. (2017). Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger. Journal of Hazardous Materials, 334, 256–266.

    Article  CAS  Google Scholar 

  • Wang, X., Cai, W., Lin, Y., Wang, G., & Liang, C. (2010a). Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. Journal of Materials Chemistry, 20, 8582–8590.

    Article  CAS  Google Scholar 

  • Wang, Y., Moo, Y. X., Chen, C., Gunawan, P., & Xu, R. (2010b). Fast precipitation of uniform CaCO 3 nanospheres and their transformation to hollow hydroxyapatite nanospheres. Journal of Colloid and Interface Science, 352, 393–400.

    Article  CAS  Google Scholar 

  • Wang, Z., Feng, Y., Hao, X., Huang, W., & Feng, X. (2014). A novel potential-responsive ion exchange film system for heavy metal removal. Journal of Materials Chemistry A, 2, 10263–10272.

    Article  CAS  Google Scholar 

  • Yavuz, O., Guzel, R., Aydin, F., Tegin, I., & Ziyadanogullari, R. (2007). Removal of cadmium and lead from aqueous solution by calcite. Polish Iournal of Environmental Studies, 16, 467.

    CAS  Google Scholar 

  • Yoder, C., Bushong, E., Liu, X., Weidner, V., McWilliams, P., Martin, K., Lorgunpai, J., Haller, J., & Schaeffer, R. (2010). The synthesis and solubility of the copper hydroxyl nitrates: gerhardtite, rouaite and likasite. Mineralogical Magazine, 74, 433–440.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. Zhang thanks the University of Sydney for a scholarship for her PhD study and the scientific and technical assistance, of the Australian Centre for Microscopy and Microanalysis (ACMM) Research Facility at the University of Sydney. Dr. Alexander K.Y. Yuen is acknowledged for his assistance with N2 sorption–desorption isotherm analysis. Dr. Shane Wilkinson is acknowledged for his support of ICP-OES analysis. Dr. Kang Liang acknowledges the support from the Scientia Fellowship program at UNSW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Maschmeyer.

Electronic supplementary material

ESM 1

(DOCX 1181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Richardson, J.J., Masters, A.F. et al. Effective Removal of Toxic Heavy Metal Ions from Aqueous Solution by CaCO3 Microparticles. Water Air Soil Pollut 229, 136 (2018). https://doi.org/10.1007/s11270-018-3787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3787-0

Keywords

Navigation