Skip to main content

Advertisement

Log in

Enhancement of Solubility and Biohydrogen Production from Sewage Sludge with Lime Mud Filtrate

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This work has been performed to investigate the use of lime mud filtrate (LMF) pretreatment to enhance hydrogen (H2) evolution from sewage sludge (SS). The SS samples were pretreated with LMF (pH 8.0–11.0) at 55 °C for 48 h, prior to the H2 fermentation. The maximum H2 yield of 38.30 ml/g-VS (volatile solid) was obtained from the SS pretreated by LMF pH of 10.0, with the corresponding lag time of 3.10 h, which was well described by the modified Gompertz model. Adequate pH of LMF facilitated the solubilization of SS and the release of organic matters, providing adequate substrates for subsequent bio-H2 evolution. The soluble chemical oxygen demand was increased from 25.0 to 91.7%, as compared with the control test without LMF soak. However, further increase in pH of LMF could decrease the concentration of available substrate, thus reducing the H2 yield. This technique revealed sustainable waste management and energy recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abuşoğlu, A., Demir, S., & Özah, E. (2016). Energy and economic analyses of models developed for sustainable hydrogen production from biogas-based electricity and sewage sludge. International Journal of Hydrogen Energy, 41(31), 13426–13435.

    Article  Google Scholar 

  • Amin, M. M., Bina, B., Taheri, E., Zare, M. R., Ghasemian, M., Ginkel, S. W. V., & Fatehizadeh, A. (2017). Metabolism and kinetic study of bioH2 production by anaerobic sludge under different acid pretreatments. Process Biochemistry, 61, 24–29.

    Article  CAS  Google Scholar 

  • Assawamongkholsiri, T., Reungsang, A., & Pattra, S. (2013). Effect of acid, heat and combined acidheat pretreatments of anaerobic sludge on hydrogen production by anaerobic mixed cultures. International Journal of Hydrogen Energy, 38(14), 6146–6153.

    Article  CAS  Google Scholar 

  • Cai, M. L., Liu, J. X., & Wei, Y. S. (2004). Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environmental Science & Technology, 38(11), 3195–3202.

    Article  CAS  Google Scholar 

  • Cao, G., Guo, W., Wang, A., Zhao, L., Xu, C., & Zhao, Q. (2012). Enhanced cellulosic hydrogen production from lime-treated cornstalk wastes using thermophilic anaerobic microflora. International Journal of Hydrogen Energy, 37(17), 13161–13166.

    Article  CAS  Google Scholar 

  • Chang, M., Zhou, S. G., Lu, N., & Ni, J. R. (2007). Enhanced Bacillus thuringiensis production from sewage sludge with alkaline and ultrasonic pretreatments. Water, Air, & Soil Pollution, 186(1–4), 75–84.

    Article  CAS  Google Scholar 

  • Chen, C. C., Lin, C. Y., & Lin, M. C. (2002). Acid-base enrichment enhances anaerobic hydrogen production process. Applied Microbiology & Biotechnology, 58(2), 224–228.

    Article  Google Scholar 

  • Chen, Y. C., Jiang, S., Yuan, H. Y., Zhou, Q., & Gu, G. W. (2007). Hydrolysis and acidification of waste activated sludge at different pHs. Water Research, 41(3), 683–689.

    Article  CAS  Google Scholar 

  • Cuetos, M. J., Fernandez, C., Gomez, X., & Moran, A. (2011). Anaerobic co-digestion of swine manure with energy crop residues. Biotechnology and Bioprocess Engineering, 16(5), 1044–1052.

    Article  CAS  Google Scholar 

  • Du, B., Sharma, L. N., Becker, C., Chen, S. F., Mowery, R. A., & Van Walsum, G. P. (2010). Effect of varying feedstock pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnology and Bioengineering, 107(3), 430–440.

    Article  CAS  Google Scholar 

  • Elsharnouby, O., Hafez, H., Nakhla, G., & Naggar, M. H. E. (2013). A critical literature review on biohydrogen production by pure cultures. International Journal of Hydrogen Energy, 38(12), 4945–4966.

    Article  CAS  Google Scholar 

  • Feng, Y., Zhang, Y., Quan, X., & Chen, S. (2014). Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Research, 52(4), 242–250.

    Article  CAS  Google Scholar 

  • Guo, L., Zhao, J., She, Z. L., Lu, M. M., & Zong, Y. (2012). Effect of S-TE (solubilization by thermophilic enzyme) digestion conditions on hydrogen production from waste sludge. Bioresource Technology, 117, 368–372.

    Article  CAS  Google Scholar 

  • Kim, M., & Speece, R. E. (2000). Aerobic waste activated sludge (WAS) for start-up seed of mesopilic and thermophilic anaerobic digestion. Water Research, 36(15), 3860–3866.

    Article  Google Scholar 

  • Koehler, L. H. (1952). Differentiation of carbohydrate by anthrone reaction rate and colour intensity. Analytical Chemistry, 24(10), 1576–1579.

    Article  CAS  Google Scholar 

  • Lay, J. J. (2001). Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnology and Bioengineering, 74(4), 280–287.

    Article  CAS  Google Scholar 

  • Lay, J. J., Li, Y. Y., & Noike, T. (1998). The influence of pH and ammonia concentration on the methane production in high-solids digestion processes. Water Environment Research, 70(5), 1075–1082.

    Article  CAS  Google Scholar 

  • Ledda, C., Schievano, A., Scaglia, B., & Rossoni, M. (2016). Integration of microalgae production with anaerobic digestion of dairy cattle manure: an overall mass and energy balance of the process. Journal of Cleaner Production, 112(1), 103–112.

    Article  CAS  Google Scholar 

  • Li, H., Jin, Y. Y., Mahar, R., Wang, Z. Y., & Nie, Y. F. (2008). Effects and model of alkaline waste activated sludge treatment. Bioresource Technology, 99, 5140–5144.

    Article  CAS  Google Scholar 

  • Li, C., Wang, X., Zhang, G., Yu, G., & Lin, J. (2017). Hydrothermal and alkaline hydrothermal pretreatment plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification. Water Research, 117, 49–57.

    Article  CAS  Google Scholar 

  • Lin, C. L., & Fang, H. H. P. (2007). Fermentative hydrogen production from wastewater and solids wastes by mixed culture. Critical Reviews in Environmental Science & Technology, 37(1), 1–39.

    Article  CAS  Google Scholar 

  • Lin, Y. H., Zheng, H. X., & Juan, M. L. (2012). Biohydrogen production using waste activated sludge as a substrate from fructose-processing wastewater treatment. Process Safety & Environmental Protection, 90(3), 221–230.

    Article  CAS  Google Scholar 

  • Liu, W., Yang, D. H., Xu, L., Jia, C., Li, W. J., Bosire, O. I., & Shen, C. M. (2012). Effect of return sludge pre-concentration on biological phosphorus removal in a novel oxidation ditch. Chinese Journal of Chemical Engineering, 20(4), 747–753.

    Article  CAS  Google Scholar 

  • Liu, N., Wang, Q., Jiang, J., & Zhang, H. (2017). Effects of salt and oil concentrations on volatile fatty acid generation in food waste fermentation. Renewable Energy, 113, 1523–1528.

    Article  CAS  Google Scholar 

  • Mcinerney, M. J. (1998). Anaerobic hydrolysis and fermentation of fats and proteins. In A. J. B. Zehnder (Ed.), Biology of anaerobic microorganisms. (pp. 373–417). New York: Willey.

    Google Scholar 

  • Monte, M. C., Fuente, E., Blanco, A., & Negro, C. (2009). Waste management from pulp and paper production in the European Union. Waste Management, 29(1), 293–308.

    Article  CAS  Google Scholar 

  • Neyens, E., & Baeyens, J. (2003). A review of thermal sludge pre-treatment processes to improve dewaterability. Journal of Hazardous Materials, 98, 51–67.

    Article  CAS  Google Scholar 

  • Ras, M., Girbal-Neuhauser, E., Paul, E., Spérandio, M., & Lefebvre, D. (2008). Protein extraction from activated sludge: an analytical approach. Water Research, 42(8–9), 1867–1878.

    Article  CAS  Google Scholar 

  • Serrano, A., Siles, J. A., Martín, M. A., Chica, A. F., Estévez-Pastor, F. S., & Toro -Baptista, E. (2016). Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment. Journal of Environmental Management, 177, 231–239.

    Article  CAS  Google Scholar 

  • Shomar, B., Kalavrouziotis, I. K., Koukoulakis, P. H., & Yahya, A. (2013). Soil pollution indices under the effect of sludge. Water, Air, & Soil Pollution, 224(7), 1436–1447.

    Article  Google Scholar 

  • Speece, R. E. (1996). Anaerobic biotechnology for industrial wastewaters. Nashville Tennessee: Archae Press.

    Google Scholar 

  • Su, G., Huo, M., Yuan, Z., Wang, S., & Peng, Y. (2013). Hydrolysis, acidificationand dewaterability of waste activated sludge under alkaline conditions: combined effects of NaOH and Ca(OH)2. Bioresource Technology, 136, 237–243.

    Article  CAS  Google Scholar 

  • Wan, J. J., Jing, Y. H., Zhang, S. C., Angelidaki, I., & Luo, G. (2016). Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: focusing on homoacetogenesis. Water Research, 102, 524–532.

    Article  CAS  Google Scholar 

  • Wang, C. C., Chang, C. W., Chu, C. P., Lee, D. J., Chang, B. V., & Liao, C. S. (2003). Hydrogen production from wastewater sludge using a Clostridium strain. Journal of Environmental Science & Health (Part A), 38(9), 1867–1875.

    Article  CAS  Google Scholar 

  • Wei, S. Z., Xiao, B. Y., & Liu, J. X. (2010). Impact of alkali and heat pretreatment on the pathway of hydrogen production from sewage sludge. Chinese Science Bulletin, 55(8), 777–786.

    Article  CAS  Google Scholar 

  • Wu, H., Wang, C., Chen, P., He, A. Y., Xing, F. X., Kong, X. P., & Jiang, M. (2017). Effects of pH and ferrous iron on the coproduction of butanol and hydrogen by Clostridium beijerinckii IB4. International Journal of Hydrogen Energy, 42(10), 6547–6555.

    Article  CAS  Google Scholar 

  • Xiao, B. Y., & Liu, J. X. (2006). Effects of thermally pretreated temperature on bio-hydrogen production from sewage sludge. Journal of Environmental Science (China), 18(1), 6–12.

    CAS  Google Scholar 

  • Xiao, B. Y., & Liu, J. X. (2009). Effects of various pretreatments on biohydrogen production from sewage sludge. Chinese Science Bulletin, 54(12), 2038–2044.

    CAS  Google Scholar 

  • Xin, X., He, J., & Qiu, W. (2017). Performance and microbial community evolutions in anaerobic fermentation process of waste activated sludge affected by solids retention time. Water, Air, & Soil Pollution, 228(6), 194–199.

    Article  Google Scholar 

  • Xue, Y., Liu, H., Chen, S., Dichtl, N., Dai, X., & Li, N. (2015). Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chemical Engineering Journal, 264, 174–180.

    Article  CAS  Google Scholar 

  • Yasin, N. H. M., Fukuzaki, M., Maeda, T., Miyazaki, T., Maail, C. M. H. C., Ariffin, H., & Wood, T. K. (2013). Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered Escherichia coli strain. International Journal of Hydrogen Energy, 38(25), 10277–10283.

    Article  Google Scholar 

  • Yuan, H. Y., Chen, Y. G., Zhang, H. X., Jiang, S., Zhou, Q., & Gu, G. W. (2006). Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environmental Science & Technology, 40(6), 2025–2029.

    Article  CAS  Google Scholar 

  • Zhang, S., Zhang, P., Zhang, G., Fan, J., & Zhang, Y. (2012). Enhancement of anaerobic sludge digestion by high-pressure homogenization. Bioresource Technology, 118, 496–501.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, Q., & Jiang, J. (2013). Lime mud from paper-making process addition to food waste synergistically enhances hydrogen fermentation performance. International Journal of Hydrogen Energy, 38(6), 2738–2745.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, Q., Zheng, P., & Wang, Y. (2014). Anaerobic digestion of food waste stabilized by lime mud from papermaking process. Bioresource Technology, 170, 270–277.

    Article  CAS  Google Scholar 

  • Zhang, J., Zhang, J., & Zang, L. (2015). Thermophilic bio-hydrogen production from corn-bran residue pretreated by calcined-lime mud from papermaking process. Bioresource Technology, 198, 564–570.

    Article  CAS  Google Scholar 

  • Zhang, J., Yao, C., Zheng, P., & Zang, L. (2017). Synergistic effects of anaerobic digestion from sewage sludge with lime mud. International Journal of Hydrogen Energy, 42(16), 12022–12031.

    Article  CAS  Google Scholar 

  • Zhao, J. W., Wang, D. B., Li, X. M., Yang, Q., Chen, H. B., Zhong, Y., & Zeng, G. M. (2015). Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Water Research, 78, 111–120.

    Article  CAS  Google Scholar 

  • Zhou, X., Wang, Q., & Jiang, G. (2015). Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process. Bioresource Technology, 182, 267–271.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Shandong Province Natural Science Foundation, China (ZR2016EEM33), and it was also supported by the Foundation (KF201720) of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/ Shandong Province, Qilu University of Technology (Shandong Academy of Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jishi Zhang.

Additional information

Highlights

• High pH of lime mud filtrate (LMF) facilitated sewage sludge (SS) solubilization.

• The SS soaked with adequate LMF provided available substrate for anaerobes.

• LMF was used as alkali and inorganic nutrient in hydrogen (H2) evolution of SS.

• Maximum H2 yield of 18.30 ml/g-VS was obtained from the SS-pH 10.0 substrate.

• LMF pretreatment is an alternative approach to enhance bio-H2 production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yao, C. & Fan, C. Enhancement of Solubility and Biohydrogen Production from Sewage Sludge with Lime Mud Filtrate. Water Air Soil Pollut 229, 129 (2018). https://doi.org/10.1007/s11270-018-3779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3779-0

Keywords

Navigation