Skip to main content
Log in

Copper Toxicity on Photosynthetic Responses and Root Morphology of Hymenaea courbaril L. (Caesalpinioideae)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Copper (Cu) is a micronutrient essential for plant development. However, in excess, it is toxic to plants and may cause various physiological and morphological changes. The study of the growth of plants exposed to excess Cu is important for the development of phytoremediation programs and for understanding the mechanisms involved in the tolerance of this metal. In this context, the objective of this research was to evaluate the effect of excess copper on photosynthetic responses and root morphology of Hymenaea courbaril L. Biometric measurements, gas exchange, root morphology, and Cu content in tissues and indices (TI and TF) were assessed, involving metal content and biomass. Up to a concentration of 200 mg kg−1, Cu favored growth, gas exchange, and root morphology of the plants under study. At a higher concentration (800 mg kg−1) in the soil, it affected plant growth and caused a decrease in photosynthetic rate. Biochemical limitations in photosynthesis were observed, as well as lower maximum net photosynthetic rate (Amax), respiration rate in the dark (Rd), light compensation point (LCP), light saturation point (LSP), and apparent quantum yield (α), when exposed to excess Cu. Root length, surface area, mean diameter, root volume, dry biomass, and specific root length decreased with high Cu concentrations in the soil. Cu was accumulated in the roots as a mechanism of tolerance to the excess of this metal in order to preserve the most metabolically active tissues present in the leaves. At a concentration of 800 mg kg−1, copper also caused inhibition of the root system. Plants of H. courbaril showed tolerance to excess Cu in the soil and can be indicated for the recovery of areas contaminated with this metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Zia-ur-Rehman, M., Irshad, M. K., & Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22(11), 8148–8162.

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869–881.

    Article  CAS  Google Scholar 

  • Baccio, D., Tognetti, R., Minnocci, A., & Sebastiani, L. (2009). Responses of the Populus x euramericana clone I-214 to excess zinc: carbon assimilation, structural modifications, metal distribution and cellular localization. Environmental and Experimental Botany, 67(1), 153–163.

    Article  CAS  Google Scholar 

  • Batool, R., Hameed, M., Ashraf, M., Ahmad, M. S. A., & Fatima, S. (2015). Physio-anatomical responses of plants to heavy metals. In: M. Öztürk, M. Ashraf, A. Aksoy, M.S.A. Ahmad (Eds.) Phytoremediation for green energy (pp. 79–96). Netherlands: Springer.

  • Bochicchio, R., Sofo, A., Terzano, R., Gattullo, C. E., Amato, M., & Scopa, A. (2015). Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: a new screening technique for studying plant response to metals. Plant Physiology and Biochemistry, 91, 20–27.

    Article  CAS  Google Scholar 

  • Bouma, T. J., Nielsen, K. L., Van Hal, J., & Koutstaal, B. (2001). Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 15(3), 360–369.

    Article  Google Scholar 

  • Cai, S., Xiong, Z., Li, L., Li, M., Zhang, L., Liu, C., & Xu, Z. (2014). Differential responses of root growth, acid invertase activity and transcript level to copper stress in two contrasting populations of Elsholtzia haichowensis. Ecotoxicology, 23(1), 76–91.

    Article  CAS  Google Scholar 

  • Cambrollé, J., Mancilla-Leytón, J. M., Muñoz-Vallés, S., Figueroa-Luque, E., Luque, T., & Figueroa, M. E. (2013). Effects of copper sulfate on growth and physiological responses of Limoniastrum monopetalum. Environmental Science and Pollution Research, 20(12), 8839–8847.

    Article  CAS  Google Scholar 

  • Cambrollé, J., García, J. L., Figueroa, M. E., & Cantos, M. (2015). Evaluating wild grapevine tolerance to copper toxicity. Chemosphere, 120, 171–178.

    Article  CAS  Google Scholar 

  • Carmo, C. A. F. S., Araújo, W. S., Bernardi, A. C. C. & Saldanha, M. F. C. (2000) Métodos de análise de tecidos vegetais utilizados na Embrapa Solos. Embrapa Solos, Rio de Janeiro. http://www.infoteca.cnptia.embrapa.br/bitstream/doc/337672/1/Metododeanalisedetecido.pdf. (in portuguese).

  • Colzi, I., Pignattelli, S., Giorni, E., Papini, A., & Gonnelli, C. (2015). Linking root traits to copper exclusion mechanisms in Silene paradoxa L.(Caryophyllaceae). Plant and Soil, 390(1–2), 1–15.

    Article  CAS  Google Scholar 

  • DalCorso, G., Manara, A., Piasentin, S., & Furini, A. (2014). Nutrient metal elements in plants. Metallomics, 6(10), 1770–1788.

    Article  CAS  Google Scholar 

  • Ent, A. V. D., Baker, A. J., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362(1–2), 319–334.

    Google Scholar 

  • Feigl, G., Kumar, D., Lehotai, N., Tugyi, N., Molnár, Á., Ördög, A., Szepesi, Á., Gémes, K., Laskay, G., Erdei, L., & Kolbert, Z. (2013). Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress. Ecotoxicology and Environmental Safety, 94, 179–189.

    Article  CAS  Google Scholar 

  • Freitas, T. A., França, M. G. C., de Almeida, A. A. F., de Oliveira, S. J. R., de Jesus, R. M., Souza, V. L., Silva, J. V. S., & Mangabeira, P. A. (2015). Morphology, ultrastructure and mineral uptake is affected by copper toxicity in young plants of Inga subnuda subs. luschnathiana (Benth.) TD Penn. Environmental Science and Pollution Research, 22(20), 15479–15494.

    Article  CAS  Google Scholar 

  • Fu, L., Chen, C., Wang, B., Zhou, X., Li, S., Guo, P., Shen, Z., Wang, G., & Chen, Y. (2015). Differences in copper absorption and accumulation between copper-exclusion and copper-enrichment plants: a comparison of structure and physiological responses. PLoS One, 10(7), e0133424.

    Article  CAS  Google Scholar 

  • Gautam, S., Anjani, K., & Srivastava, N. (2016). In vitro evaluation of excess copper affecting seedlings and their biochemical characteristics in Carthamus tinctorius L. (variety PBNS-12). Physiology and Molecular Biology of Plants, 22(1), 121–129.

    Article  CAS  Google Scholar 

  • Imada, S., Yamanaka, N., & Tamai, S. (2008). Water table depth affects Populus alba fine root growth and whole plant biomass. Functional Ecology, 22(6), 1018–1026.

    Article  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). London: CRC Press.

    Google Scholar 

  • Küpper, H., & Andresen, E. (2016). Mechanisms of metal toxicity in plants. Metallomics, 8, 269–285.

    Article  Google Scholar 

  • Lequeux, H., Hermans, C., Lutts, S., & Verbruggen, N. (2010). Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry, 48(8), 673–682.

    Article  CAS  Google Scholar 

  • Lin, C. C., Chen, L. M., & Liu, Z. H. (2005). Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Science, 168(3), 855–861.

    Article  CAS  Google Scholar 

  • Magalhães, P. C., De Souza, T. C., Cantão, F. R. D. O., & Padilha, F. A. (2012). Root morphology of maize lines with contrasting drought resistance under three toxic levels of aluminum. Brazilian Journal of Maize and Sorghum, 11(1), 35–48.

    Google Scholar 

  • Marco, R., Silva, R. F., Andreazza, R., Ros, C. O., Scheid, D. L., & Bertollo, G. M. (2016). Copper phytoaccumulation and tolerance by seedlings of native Brazilian trees. Environmental Engineering Science, 33(3), 176–184.

    Article  CAS  Google Scholar 

  • Mateos-Naranjo, E., Andrades-Moreno, L., Cambrollé, J., & Perez-Martin, A. (2013). Assessing the effect of copper on growth, copper accumulation and physiological responses of grazing species Atriplex halimus: ecotoxicological implications. Ecotoxicology and Environmental Safety, 90, 136–142.

    Article  CAS  Google Scholar 

  • Nunes, C., Araújo, S. S., Silva, J. M., Fevereiro, P., & Silva, A. B. (2009). Photosynthesis light curves: a method for screening water deficit resistance in the model legume Medicago truncatula. Annals of Applied Biology, 155(3), 321–332.

    Article  Google Scholar 

  • Pinheiro, D. G., Streck, N. A., Richter, G. L., Langner, J. A., Winck, J. E. M., Uhlmann, L. O., & Zanon, A. J. (2014). Soil water threshold for transpiration and leaf growth in cassava plants in two water deficit periods. Revista Brasileira de Ciência do Solo, 38(6), 1740–1749.

    Article  Google Scholar 

  • Shi, X., Zhang, X., Chen, G., Chen, Y., Wang, L., & Shan, X. (2011). Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings. Journal of Environmental Sciences, 23(2), 266–274.

    Article  CAS  Google Scholar 

  • Silva, N. D. G., Cholewa, E., & Ryser, P. (2012). Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.) Journal of Experimental Botany, 63(16), 5957–5966.

    Article  CAS  Google Scholar 

  • Silva, R. F. D., Ros, C. O. D., Scheid, D. L., Grolli, A. L., Marco, R. D., & Missio, E. L. (2015). Copper translocation and tolerance in seedlings of tree species grown in contaminated soil. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(11), 1093–1099.

    Article  Google Scholar 

  • Souza, T. D., Castro, E. D., Pereira, F. J., Parentoni, S. N., & Magalhães, P. C. (2009). Morpho-anatomical characterization of root in recurrent selection cycles for flood tolerance of maize (Zea mays L.) Plant Soil and Environment, 55(11), 504–510.

    Article  Google Scholar 

  • Souza, T. C. D., Magalhães, P. C., Pereira, F. J., Castro, E. M. D., Silva Junior, J. M. D., & Parentoni, S. N. (2010). Leaf plasticity in successive selection cycles of ‘Saracura’ maize in response to periodic soil flooding. Pesquisa Agropecuária Brasileira, 45(1), 16–24.

    Article  Google Scholar 

  • Souza, T. C., De Castro, E. M., Magalhães, P. C., Alves, E. T., & Pereira, F. J. (2012a). Early characterization of maize plants in selection cycles under soil flooding. Plant Breeding, 131(4), 493–501.

    Article  Google Scholar 

  • Souza, S. C. R., de Andrade, S. A. L., de Souza, L. A., & Schiavinato, M. A. (2012b). Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. Journal of Environmental Management, 110, 299–307.

    Article  CAS  Google Scholar 

  • Souza, V. L., Almeida, A. A. F., Souza, J. S., Mangabeira, P. A. O., Jesus, R. M., Pirovani, C. P., Ahnert, D., Baligar, V. C., & Loguercio, L. L. (2014). Altered physiology, cell structure, and gene expression of Theobroma cacao seedlings subjected to Cu toxicity. Environmental Science and Pollution Research, 21, 1217–1230.

    Article  CAS  Google Scholar 

  • Wahl, S., & Ryser, P. (2000). Root tissue structure is linked to ecological strategies of grasses. New Phytologist, 148(3), 459–471.

    Article  Google Scholar 

  • Wang, Q. Y., Liu, J. S., & Hu, B. (2016). Integration of copper subcellular distribution and chemical forms to understand copper toxicity in apple trees. Environmental and Experimental Botany, 123, 125–131.

    Article  CAS  Google Scholar 

  • Yruela, I. (2013). Transition metals in plant photosynthesis. Metallomics, 5(9), 1090–1109.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhao, J., Duan, M., Zhang, H., Jiang, J., & Yu, R. (2013). Inhibition of dsDNA-templated copper nanoparticles by pyrophosphate as a label-free fluorescent strategy for alkaline phosphatase assay. Analytical Chemistry, 85(8), 3797–3801.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, X., Gao, B., Li, Z., Xia, H., Li, H., & Li, J. (2014). Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of an energy crop, king grass (Pennisetum americanum× P. purpureum). Biomass and Bioenergy, 67, 179–187.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Prof. Dr. Marcelo Polo, Federal University of Alfenas, Alfenas, MG, Brazil, for the long-term merits of his studies on plant ecophysiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Maria Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, D.M., Veroneze Júnior, V., da Silva, A.B. et al. Copper Toxicity on Photosynthetic Responses and Root Morphology of Hymenaea courbaril L. (Caesalpinioideae). Water Air Soil Pollut 229, 138 (2018). https://doi.org/10.1007/s11270-018-3769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3769-2

Keywords

Navigation