Skip to main content

Advertisement

Log in

Discovering Metal-Tolerant Endophytic Fungi from the Phytoremediator Plant Phragmites

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Fifteen endophytic isolates were recovered from the phytoremediator plant Phragmites. Phylogenetic analysis revealed they were primarily from the class Sordariomycetes and Dothiodiomycetes. Most of the endophytes in Sordariomycetes were from the orders Diaporthales (six isolates, e.g., Diaporthe, Phomopsis), Hypocreales (two isolates, e.g., Gliomastix, Trichoderma), and Xylariales (one isolate, e.g., Arthrinium), while members from Dothideomycetes were from the order Pleosporales (six isolates, e.g., Bipolaris, Curvularia, Microsphaeropsis, Saccharicola). The endophytes demonstrated varying responses to the metals (Al3+, Cu2+, Zn2+, Pb2+, and Cd2+) and concentrations (10, 25, 50, 100, and 200 mg L−1) tested, with isolates of Dothideomycetes predominantly more tolerable to metals (80–97% tolerance) than Sordariomycetes (73–90% tolerance). Pb2+ was the least harmful towards the endophytes, while Al3+ appeared to be highly toxic with mean tolerable range (TR) of > 200 and 25–50 mg L−1, respectively. Endophytes thriving in toxic metals may further be applied for biocontrol, bioremediation, or growth-promoting purposes in metal-contaminated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agamuthu, P., & Said, N. A. A. (2009). Physico-chemical treatment of Bukit Tagar sanitary landfill leachate using P-Floc775 and ferric chloride. Malaysian Journal of Science, 28, 187–195.

    CAS  Google Scholar 

  • Almeida, T. T., Orlandelli, R. C., Azevedo, J. L., & Pamphile, J. A. (2015). Molecular characterization of the endophytic fungal community associated with Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) (Pontederiaceae) native to the upper Paraná River floodplain, Brazil. Genetics and Molecular Research, 14, 4920–4931.

    Article  CAS  Google Scholar 

  • Anand, P., Isar, J., Saran, S., & Saxena, R. K. (2006). Bioaccumulation of copper by Trichoderma viride. Bioresource Technology, 97, 1018–1025.

    Article  CAS  Google Scholar 

  • Angelini, P., Rubini, A., Gigante, D., Reale, L., Pagiotti, R., & Venanzoni, R. (2012). The endophytic fungal communities associated with the leaves and roots of the common reed (Phragmites australis) in Lake Trasimeno (Perugia, Italy) in declining and healthy stands. Fungal Ecology, 5, 683–693.

    Article  Google Scholar 

  • Bonanno, G., & Giudice, R. L. (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10, 639–645.

    Article  CAS  Google Scholar 

  • Botella, L., & Diez, J. J. (2011). Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Diversity, 47, 9–18.

    Article  Google Scholar 

  • Chow, Y. Y., & Ting, A. S. Y. (2015). Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. Journal of Advanced Research, 6, 869–876.

    Article  CAS  Google Scholar 

  • Clarke, B. B., White, J. F. J., Hurley, R. H., Torres, M. S., Sun, S., & Huff, D. R. (2006). Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Disease, 90, 994–998.

    Article  Google Scholar 

  • Clay, K., Shearin, Z. R. C., Bourke, K. A., Bickford, W. A., & Kowalski, K. P. (2016). Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes. Biological Invasions, 18, 2703–2716.

    Article  Google Scholar 

  • Cotton, F. A., & Wilkinson, G. (1988). Advanced inorganic chemistry. New York: John Wiley and Sons.

    Google Scholar 

  • Crozier, J., Thomas, S. E., Aime, M. C., Evans, H. C., & Holmes, K. A. (2006). Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of Theobroma cacao. Plant Pathology, 55, 783–791.

    Article  CAS  Google Scholar 

  • Davis, A. T., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37, 4311–4330.

    Article  CAS  Google Scholar 

  • Drasch, G. A. (1983). An increase of cadmium body burden for this century—an investigation on human tissues. Science of the Total Environment, 26, 111–119.

    Article  CAS  Google Scholar 

  • Dunbabin, J. S., & Bowmer, K. H. (1992). Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Science of the Total Environment, 111, 151–168.

    Article  CAS  Google Scholar 

  • Errasquín, E. L., & Vázquez, C. (2003). Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere, 50, 137–143.

    Article  Google Scholar 

  • Farr, D. F., Castlebury, L. A., & Rossman, A. Y. (2002). Morphological and molecular characterization of Phomopsis vaccinii and additional isolates of Phomopsis from blueberry and cranberry in the eastern United States. Mycologia, 94, 494–504.

    Article  CAS  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Freitas, M. O., Abilhoa, V., & da Costa, S. G. H. (2011). Feeding ecology of Lutjanus analis (Teleostei: Lutjanidae) from Abrolhos Bank, eastern Brazil. Neotropical Ichthyology, 9, 411–418.

    Article  Google Scholar 

  • Gazis, R., Rehner, S., & Chaverri, P. (2011). Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Molecular Ecology, 20, 3001–3013.

    Article  Google Scholar 

  • Gorbushina, A. A., Kotlova, E. R., & Sherstneva, O. A. (2008). Cellular responses of microcolonial rock fungi to long-term dessication and subsequent rehydration. Studies in Mycology, 61, 91–97.

    Article  CAS  Google Scholar 

  • Guillén, Y., & Machuca, A. (2008). The effect of copper on the growth of wood-rotting fungi and a blue-stain fungus. World Journal of Microbiology and Biotechnology, 24, 31–37.

    Article  Google Scholar 

  • Khan, A. R., Ullah, I., Waqas, M., Park, G. S., Khan, A. L., Hong, S. J., Ullah, R., Jung, B. K., Park, C. E., Ur-Rehman, S., Lee, I. J., & Shin, J. H. (2017). Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicology and Environmental Safety, 136, 180–188.

    Article  CAS  Google Scholar 

  • Kimmons, C. A., Gwinn, K. D., & Bernard, E. C. (1990). Nematode reproduction on endophyte-infected and endophyte-free tall fescue. Plant Disease, 74, 757–761.

    Article  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    Article  CAS  Google Scholar 

  • Lόpez-Archilla, A. I., González, A. E., Terrόn, M. C., & Amils, R. (2004). Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Canadian Journal of Microbiology, 50, 923–934.

    Article  Google Scholar 

  • Martin, H. (2008). Studies upon the copper fungicides. Annals of Applied Biology, 20, 342–363.

    Article  Google Scholar 

  • Matthew, P., Austin, R. D., Varghese, S. S., & Manojkumar, A. D. (2015). Effect of copper-based fungicide (bordeaux mixture) spray on the total copper content of areca nut: implications in increasing prevalence of oral submucous fibrosis. Journal of International Society of Preventive and Community Dentistry, 5, 283–289.

    Article  Google Scholar 

  • Meyerson, L. A., & Cronin, J. T. (2013). Evidence for multiple introductions of Phragmites australis to North America: detection of a new non-native haplotype. Biological Invasions, 14, 2605–2608.

    Article  Google Scholar 

  • Paraszkiewicz, K., Frycie, A., Slaba, M., & Dlugoński, J. (2007). Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence. Biometals, 20, 797–805.

    Article  CAS  Google Scholar 

  • Rao, H. C. Y., Baker, S., Rakshith, D., & Satish, S. (2015). Molecular profiling and antimicrobial potential of endophytic Gliomastix polychroma CLB32 inhabiting Combretum latifolium Blume. Mycology, 6, 176–181.

    Article  CAS  Google Scholar 

  • Redman, R. S., Sheehan, K. B., Stout, R. G., Rodriguez, R. J., & Henson, J. M. (2002). Thermotolerance generated by plant/fungal symbiosis. Science. https://doi.org/10.1126/science.1078055.

  • Rhee, Y. J., Hillier, S., & Gadd, G. M. (2012). Lead transformation to pyromorphite by fungi. Current Biology, 2, 237–241.

    Article  Google Scholar 

  • Rodriguez, R. J., Henson, J., Van, V. E., Hoy, M., Wright, L., Beckwith, F., et al. (2008). Stress tolerance in plants via habitat-adapted symbiosis. ISME Journal, 2, 404–416.

    Article  Google Scholar 

  • Ruibal, C., Gueidan, C., Selbmann, L., Gorbushina, A. A., Crous, P. W., Groenewald, J. Z., Muggia, L., Gurbe, M., Isola, D., Schoch, C. L., Staley, J. T., Lutzoni, F., & de Hoog, G. S. (2009). Phylogeny of rock-inhabiting fungi related to Dothidiomycetes. Studies in Mycology, 64, 123–133.

    Article  CAS  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  • Sauvêtre, A., & Schröder, P. (2015). Uptake of carbamazepine by rhizomes and endophytic bacteria of Phragmites australis. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2015.00083.

  • Schoch, C. L., Crous, P. W., Groenewald, J. Z., Boehm, E. W. A., Burgess, T. I., de Gruyter, J., et al. (2009). A class-wide phylogenetic assessment of Dothidiomycetes. Studies in Mycology, 64, 1–15.

    Article  CAS  Google Scholar 

  • Schroeckh, V., Scherlach, K., Nützmann, H. W., Shelest, E., Schmidt-Heck, W., Schuemann, J., Martin, K., Hertweck, C., & Brakhage, A. A. (2009). Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proceedings of the National Academy of Sciences of the United States of America, 106, 14558–14563.

    Article  CAS  Google Scholar 

  • Sim, C. S. F., Tan, W. S., & Ting, A. S. Y. (2016). Endophytes from Phragmites for metal removal: evaluating their metal tolerance, adaptive behaviour and biosorption efficacy. Désalination and Water Treatment, 57, 6959–6966.

    Article  CAS  Google Scholar 

  • Sirikantaramas, S., Yamazaki, M., & Saito, K. (2009). A survival strategy: the coevolution of the camptothecin biosynthetic pathway and self-resistance mechanism. Phytochemistry, 70, 1894–1898.

    Article  CAS  Google Scholar 

  • Soares, M. A., Li, H. Y., Kowalski, K. P., Bergen, M., Torres, M. S., & White, J. F. (2016). Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biological Invasions, 18, 2689–2702.

    Article  Google Scholar 

  • Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbour-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101, 11030–11035.

    Article  CAS  Google Scholar 

  • Ting, A. S. Y., & Jioe, E. (2016). In vitro assessment of antifungal activities of antagonistic fungi towards pathogenic Ganoderma boninense under metal stress. Biological Control, 96, 57–63.

    Article  CAS  Google Scholar 

  • Vepachedu, S. K. V. R. R., Akthar, N., & Mohan, P. M. (1997). Isolation of a cadmium tolerant Curvularia sp. from polluted effluents. Current Science, 73, 453–455.

    Google Scholar 

  • Weaver, L., Michels, H. T., & Keevil, C. W. (2010). Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Letters in Applied Microbiology, 50, 18–23.

    Article  CAS  Google Scholar 

  • Wirsel, S. G. R., Leibinger, W., Ernst, M., & Mendgen, K. (2001). Genetic diversity of fungi closely associated with common reed. New Phytologist, 149, 589–598.

    Article  CAS  Google Scholar 

  • Young, C. A., Felitti, S., & Shields, K. (2006). A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genetics and Biology, 43, 679–693.

    Article  CAS  Google Scholar 

  • Yuan, Z. L., Rao, L. B., Chen, Y. C., Zhang, C. L., & Wu, Y. G. (2011). From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biology, 115, 197–213.

    Article  Google Scholar 

  • Zotti, M., Piazza, S. D., Roccotiello, E., Lucchetti, G., Mariotti, M. G., & Marescotti, P. (2014). Microfungi in highly copper-contaminated soils from an abandoned Fe-cu sulphide mine: growth responses, tolerance and bioaccumulation. Chemosphere, 117, 471–476.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Aw Yoong Kit for his guidance in constructing the phylogenetic tree.

Funding

This work is conducted using facilities by Monash University Malaysia. The first author is also a recipient of the PhD scholarship by Monash University Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeline Su Yien Ting.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, C.S.F., Cheow, Y.L., Ng, S.L. et al. Discovering Metal-Tolerant Endophytic Fungi from the Phytoremediator Plant Phragmites. Water Air Soil Pollut 229, 68 (2018). https://doi.org/10.1007/s11270-018-3733-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3733-1

Keywords

Navigation