Highly Efficient Cuprous Oxide Nanocrystals Assisted with Graphene for Decolorization Using Visible Light

Article
  • 16 Downloads

Abstract

The preparation of rhombic dodecahedral cuprous oxide (rdCu2O) decorated with various amounts of reduced graphene oxide (rGO) is carried out by using a wet-chemical route. The resultant nanocomposites (denoted as rdCu2O-xrGO, x = amounts of rGO) possess unique crystal facets of Cu2O and superior electronic properties of rGO, which are tested as photocatalysts in the degradation of methyl orange (MO) under visible light irradiation. Among all the rdCu2O-xrGO photocatalysts, the rdCu2O-1rGO is found to degrade ca. 98% of MO in the presence of very low catalyst concentration (0.0625 g L−1) within 120 min under visible light illumination. This obtained result may be owing to the well interfacial contact of rhombic dodecahedral Cu2O nanoparticles with high electronic conductivity of rGO sheets that can increase the separation of photo-induced electron-hole pairs, stabilize the Cu2O, and enhance MO adsorption, which are proofed by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence, and UV-Vis diffuse reflection spectroscopy. Most importantly, these efficient photocatalysts can be reusable and retain surpassing photoactivity in terms of MO degradation after cyclic tests, which may provide a possible opportunity for practical applications in purifying wastewater via direct sunlight.

Keywords

Cuprous oxide Nanocrystal Reduced graphene oxide Visible-light-sensitive Durability 

Notes

Acknowledgements

Financial supports of this work from the Ministry of Science and Technology of Taiwan (Contract No.: MOST 104-2628-E-006-018-MY3) are gratefully acknowledged.

References

  1. Altin, I., & Sokmen, M. (2014). Photocatalytic properties of silver incorporated titania nanoparticles immobilized on waste-derived polystyrene. Water, Air, and Soil Pollution, 225(1), 1786.CrossRefGoogle Scholar
  2. Babu, S. G., Vinoth, R., Narayana, P. S., Bahnemann, D., & Neppolian, B. S. (2015). Reduced graphene oxide wrapped Cu2O supported on C3N4: an efficient visible light responsive semiconductor photocatalyst. APL Materials, 3(10), 104415.CrossRefGoogle Scholar
  3. Bailón-García, E., Elmouwahidi, A., Álvarez, M. A., Carrasco-Marín, F., Pérez-Cadenas, A. F., & Maldonado-Hóda, F. L. (2017). New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Applied Catalysis B Environmental, 201, 29−40.CrossRefGoogle Scholar
  4. Bajpai, A. K., Dubey, R., & Bajpai, J. (2017). Synthesis, characterization, and adsorption properties of a graphene composite sand (GCS) and its application in remediation of Hg(II) ions. Water, Air, and Soil Pollution, 228(9), 346.CrossRefGoogle Scholar
  5. Cai, J. Y., Liu, W. J., & Li, Z. H. (2015). One-pot self-assembly of Cu2O/RGO composite aerogel for aqueous photocatalysis, one-pot self-assembly of Cu2O/RGO composite aerogel for aqueous photocatalysis. Applied Surface Science, 358, 146–151.CrossRefGoogle Scholar
  6. Chang, X., Gondal, M. A., Al-Saadi, A. A., Ali, M. A., Shen, H., Zhou, Q., Zhang, J., Du, M., Liu, Y., & Ji, G. (2012). Photodegradation of rhodamine B over unexcited semiconductor compounds of BiOCl and BiOBr. Journal of Colloid Interface Science, 377, 291–298.CrossRefGoogle Scholar
  7. Chen, Q. P., Li, J. H., Li, X. J., Huang, K., Zhou, B. X., Cai, W. M., & Shangguan, W. F. (2012). Visible-light responsive photocatalytic fuel cell based on WO3/W photoanode and Cu2O/Cu photocathode for simultaneous wastewater treatment and electricity generation. Environmental Science & Technology, 46(20), 11451–11458.CrossRefGoogle Scholar
  8. Choi, H., Shin, D., Yeo, B. C., Song, T., Han, S. S., Park, N., & Kim, S. (2016). Simultaneously controllable doping sites and the activity of a W-N codoped TiO2 photocatalyst. ACS Catalysis, 6(5), 2745−2753.Google Scholar
  9. Chowdhury, P., Athapaththu, S., Elkamel, A., & Ray, A. K. (2017). Visible-solar-light-driven photo-reduction and removal of cadmium ion with eosin Y-sensitized TiO2 in aqueous solution of triethanolamine. Separation and Purification Technology, 174, 109−115.CrossRefGoogle Scholar
  10. Dahl, J. P., & Switendick, A. C. (1966). Energy bands in cuprous oxide. Journal of Physics and Chemistry of Solids, 27(6–7), 931–942.CrossRefGoogle Scholar
  11. Das, K., & De, S. K. (2009). Optical and photoconductivity studies of Cu2O nanowires synthesized by solvothermal method. Journal of Luminescence, 129(9), 1015–1022.CrossRefGoogle Scholar
  12. El-Sheikh, S. M., Khedr, T. M., Hakki, A., Ismail, A. A., Badawy, W. A., & Bahnemann, D. W. (2017). Visible light activated carbon and co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Separation and Purification Technology, 173, 258−268.CrossRefGoogle Scholar
  13. Feng, Y., Siow, K. S., Teo, W. K., Tan, K. L., & Hseih, A. K. (1997). Corrosion mechanisms and products of copper in aqueous solutions at various pH values. Corrosion, 53, 389–398.CrossRefGoogle Scholar
  14. Gao, Z., Liu, J., Xu, F., Wu, D., Wu, Z., & Jiang, K. (2012). One-pot synthesis of graphene-cuprous oxide composite with enhanced photocatalytic activity. Solid State Science, 14(2), 276–280.CrossRefGoogle Scholar
  15. Gonzalez, L. T., Leyva-Porras, C., Sanchez-Dominguez, M., Maza, I. J., & Rodriguez, F. E. L. (2017). Comparative photocatalytic performance on the degradation of 2-naphthol under simulated solar light using alpha-Bi4V2O11 synthesized by solid-state and co-precipitation methods. Water, Air, and Soil Pollution, 228(2), 75.CrossRefGoogle Scholar
  16. Granbohm, H., Kulmala, K., Lyer, A., Ge, Y. L., & Hannula, S. P. (2017). Preparation and photocatalytic activity of quaternary GO/TiO2/Ag/AgCl nanocomposites. Water, Air, and Soil Pollution, 228(4), –127.Google Scholar
  17. Haldar, K. K., Sinha, G., Lahtinen, J., & Patra, A. (2012). Hybrid colloidal Au-CdSe pentapod heterostructures synthesis and their photocatalytic properties. ACS Applied Materials & Interfaces, 4(11), 6266–6274.CrossRefGoogle Scholar
  18. Huang, W.-C., Lyu, L.-M., Yang, Y.-C., & Huang, M. H. (2012). Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. Journal of American Chemical Society, 134(2), 1261−1267.CrossRefGoogle Scholar
  19. Huang, H. J., Zhang, J., Jiang, L., & Zang, Z. G. (2017a). Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B. Journal of Alloys and Compounds, 718, 112−115.Google Scholar
  20. Huang, Y., Yan, C. F., Guo, C. Q., Lu, Z. X., Shi, Y., & Wang, Z. D. (2017b). Synthesis of GO-modified Cu2O nanosphere and the photocatalytic mechanism of water splitting for hydrogen production. International Journal of Hydrogen Energy, 42(7), 4007−4016.Google Scholar
  21. Kecsenovity, E., Endrodi, B., Toth, P. S., Zou, Y., Dryfe, R. A. W., Rajeshwar, K., & Janaky, C. (2017). Enhanced photoelectrochemical performance of cuprous oxide/graphene nanohybrids. Journal of American Chemical Society, 139(19), 6682−6692.CrossRefGoogle Scholar
  22. Khurana, I., Saxena, A., Bharti, Khurana, J. M., & Rai, P. K. (2017). Removal of dyes using graphene-based composites: a review. Water, Air, and Soil Pollution, 228(5), 180.CrossRefGoogle Scholar
  23. Kumar, S., & Ojha, A. K. (2016). Ni, Co and Ni-Co codoping induced modification in shape, optical band gap and enhanced photocatalytic activity of CeO2 nanostructures for photodegradation of methylene blue dye under visible light irradiation. RSC Advance, 6(11), 651–8660.Google Scholar
  24. Kumar, S., Parlett, C., Isaacs, M. A., Jowett, D. V., Douthwaite, R. E., Cockett, M. C. R., & Lee, A. F. (2016). Facile synthesis of hierarchical Cu2O nanocubes as visible light. Applied Catalysis B Environmental, 189, 226–232.CrossRefGoogle Scholar
  25. Kwon, Y., Soon, A., Han, H., & Lee, H. J. (2015). Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting. Journal of Materials Chemistry A, 3(1), 156−162.Google Scholar
  26. Landi, S., Carneiro, J. O., Fernandes, F., Parpot, P., Molina, J., Cases, F., Fernandez, J., Santos, J. G., Soares, G. M. B., Teixeira, V., & Samantilleke, A. P. (2017). Functionalization of cotton by RGO/TiO2 to enhance photodegradation of rhodamine B under simulated solar irradiation. Water, Air, and Soil Pollution, 228(9), 335.CrossRefGoogle Scholar
  27. Leon, D. E., Zuniga-Benitez, H., Penuela, G. A., & Mansilla, H. D. (2017). Photocatalytic removal of the antibiotic cefotaxime on TiO2 and ZnO suspensions under simulated sunlight radiation. Water, Air, and Soil Pollution, 228(9), 361.CrossRefGoogle Scholar
  28. Li, H. Q., Hong, W. S., Cui, Y. M., Hu, X. Y., Fang, S. H., & Zhu, L. (2014). Enhancement of the visible light photocatalytic activity of Cu2O/BiVO4 catalysts synthesized by ultrasonic dispersion method at room temperature. Materials Science Engineering B, 181, 1–8.CrossRefGoogle Scholar
  29. Li, F., Zhang, L., Tong, J. C., Liu, Y. L., Xu, S. G., Cao, Y., & Cao, S. K. (2016). Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor. Nano Energy, 27, 320−329.Google Scholar
  30. Liu, S.-H., & Syu, H.-R. (2012). One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light. Applied. Energy, 100, 148−154.Google Scholar
  31. Liu, S.-H., & Syu, H.-R. (2013). High visible-light photocatalytic hydrogen evolution of C,N-codoped mesoporous TiO2 nanoparticles prepared via an ionic-liquid template approach. International Journal of Hydrogen Energy, 38(32), 13856–13865.CrossRefGoogle Scholar
  32. Liu, G. G., He, F., Li, X. Q., Wang, S. H., Li, L. J., Zuo, G. F., Huang, Y., & Wan, Y. Z. (2011). Three dimensional cuprous oxide microtube lattices with high catalytic activity templated by bacterial cellulose nanofibers. Journal of Materials Chemistry, 21(29), 10637–10640.CrossRefGoogle Scholar
  33. Liu, S.-H., Syu, H.-R., & Wu, C.-Y. (2014). Alcohol solvents evaporation-induced self-assembly synthesis of mesoporous TiO2-x-yCxNy nanoparticles toward visible-light driven photocatalytic activity. Journal of Nanoparticle Research, 16(12), 2750.CrossRefGoogle Scholar
  34. Liu, S.-H., Wei, Y.-S., & Lu, J.-S. (2016a). Visible-light-driven photodegradation of sulfamethoxazole and methylene blue by Cu2O/rGO photocatalysts. Chemosphere, 154, 118–123.CrossRefGoogle Scholar
  35. Liu, X. W., Shen, L. Y., & Hu, Y. H. (2016b). Preparation of TiO2-graphene composite by a two-step solvothermal method and its adsorption-photocatalysis property. Water, Air, and Soil Pollution, 227(5), 141.CrossRefGoogle Scholar
  36. Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & Garcia, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B Environmental, 201, 582–590.CrossRefGoogle Scholar
  37. Mayorov, A. S., Gorbachev, R. V., Morozov, S. V., Britnell, L., Jalil, R., Ponomarenko, L. A., Blake, P., Novoselov, K. S., Watanabe, K., Taniguchi, T., & Giem, A. K. (2011). Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters, 11(6), 2396–2399.CrossRefGoogle Scholar
  38. Nadarajan, R., Abu Bakar, W. A. W., Ali, R., & Ismail, R. (2016). Effect of structural defects towards the performance of TiO2/SnO2/WO3 photocatalyst in the degradation of 1,2-dichlorobenzene. Journal of the Taiwan Institute of Chemical Engineers, 64, 106−115.CrossRefGoogle Scholar
  39. Nalbandian, M. J., Greenstein, K. E., Shuai, D. M., Zhang, M. L., Choa, Y. H., Parkin, G. F., Myung, N. V., & Cwiertny, D. M. (2015). Tailored synthesis of photoactive TiO2 nanofibers and Au/TiO2 nanofiber composites: structure and reactivity optimization for water treatment applications. Environmental Science & Technology, 49(3), 1654−1663.CrossRefGoogle Scholar
  40. Nethravathi, C., & Rajamathi, M. (2008). Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon, 46(14), 1994–1998.CrossRefGoogle Scholar
  41. Niu, Z. G. (2014). Reduced graphene oxide-cuprous oxide hybrid nanopowders: hydrothermal synthesis and enhanced photocatalytic performance under visible light irradiation. Materials Science in Semiconductor Processing, 23, 78–84.CrossRefGoogle Scholar
  42. Ojha, D. P., Joshi, M. K., & Kim, H. J. (2017). Photo-fenton degradation of organic pollutants using a zinc oxide decorated iron oxide/reduced graphene oxide nanocomposite. Ceramics International, 43(1, 1290–1297.CrossRefGoogle Scholar
  43. Petronella, F., Truppi, A., Ingrosso, C., Placido, T., Striccoli, M., Curri, M. L., Agostiano, A., & Comparelli, R. (2017). Nanocomposite materials for photocatalytic degradation of pollutants. Catalysis Today, 2017(281), 85−100.Google Scholar
  44. Pu, Y.-C., Chou, H.-Y., Kuo, W.-S., Wei, K.-H., & Hsu, Y.-J. (2017). Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide (Cu2O-rGO) nanoheterostructures and their related visible light-driven photocatalysis. Applied Catalysis B Environmental, 204, 21−32.CrossRefGoogle Scholar
  45. Reddy, P. A. K., Reddy, P. V. L., Kwon, E., Kim, K. H., Akter, T., & Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media. Environment International, 91, 94–103.CrossRefGoogle Scholar
  46. Shang, Y., & Guo, L. (2015). Facet-controlled synthetic strategy of Cu2O-based crystals for catalysis and sensing. Advanced Science, 2(10), 1500140.CrossRefGoogle Scholar
  47. Shen, B., Zhang, Y. H., An, Q., Yu, L., & Shang, J. W. (2015). Cu2O immobilized on reduced graphene oxide for the photocatalytic treatment of red water produced from the manufacture of TNT. Desalination and Water Treatment, 54(2), 540−546.CrossRefGoogle Scholar
  48. Stankovich, S., Dikin, D. A. R., Piner, D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558−1565.CrossRefGoogle Scholar
  49. Stoller, M. D., Park, S., Zhu, Y., An, J., & Ruoff, R. S. (2008). Graphene-based ultracapacitors. Nano Letters, 8(10), 3498–3502.CrossRefGoogle Scholar
  50. Su, F. Y., Xu, C. Q., Yu, Y. X., & Zhang, W. D. (2016). Carbon self-doping induced activation of n-pi* electronic transitions of g-C3N4 nanosheets for efficient photocatalytic H2 evolution. ChemCatChem, 8(22), 3527−3535.CrossRefGoogle Scholar
  51. Sun, S. D. (2015). Recent advances in hybrid Cu2O-based heterogeneous nanostructures. Nanoscale, 7(25), 10850–10882.CrossRefGoogle Scholar
  52. Tan, L. L., Ong, W. J., Chai, S. P., Goh, B. T., & Mohamed, A. R. (2015). Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Applied Catalysis B Environmental, 179, 160–170.CrossRefGoogle Scholar
  53. Tangale, N. P., Belhekar, A. A., Kale, K. B., & Awate, S. V. (2014). Enhanced mineralization of gaseous organic pollutant by photo-oxidation using Au-doped TiO2/MCM-41. Water, Air, and Soil Pollution, 225(2), 1847.CrossRefGoogle Scholar
  54. Tao, S., Yang, M., Chen, H. H., Ren, M. Y., & Chen, G. W. (2017). Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity. Journal of Colloid Interface Science, 486, 16−26.CrossRefGoogle Scholar
  55. Wang, W. Z., Wang, G. H., Wang, X. S., Zhan, Y. J., Liu, Y. K., & Zheng, C. L. (2002). Synthesis and characterization of Cu2O nanowires by a novel reduction route. Advanced Materials, 14(1), 67−69.CrossRefGoogle Scholar
  56. Wang, M. Y., Huang, J. R., Tong, Z. W., Li, W. H., & Chen, J. (2013). Reduced graphene oxide-cuprous oxide composite via facial deposition for photocatalytic dye-degradation. Journal of Alloys Compounds, 568, 26–35.CrossRefGoogle Scholar
  57. Wang, J. T. W., Ball, J. M., Barea, E. M., Abate, A., Alexander-Webber, J. A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., Snaith, H. J., & Nicholas, R. J. (2014). Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Letters, 14(2), 724–730.CrossRefGoogle Scholar
  58. Wu, T., Liu, G., Zhao, J., Hidaka, H., & Serpone, N. (1998). Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. Journal of Physical Chemistry B, 102(30), 5845–5851.CrossRefGoogle Scholar
  59. Xu, C., Cao, L. X., Su, G., Liu, W., Liu, H., Yu, Y. Q., & Qu, X. F. (2010). Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. Journal of Hazardous Materials, 176, 807–813.CrossRefGoogle Scholar
  60. Xu, L., Zhang, F. Y., Song, X. Y., Yin, Z. L., & Bu, Y. X. (2015). Construction of reduced graphene oxide-supported Ag-Cu2O composites with hierarchical structures for enhanced photocatalytic activities and recyclability. Journal of Materials Chemistry A, 3, 5923−5933.Google Scholar
  61. Yeo, B. E., Cho, Y. S., & Huh, Y. D. (2017). Evolution of the morphology of Cu2O microcrystals: cube to 50-facet polyhedron through beveled cube and rhombicuboctahedron. CrystEngComm, 19(12), 1627–1632.CrossRefGoogle Scholar
  62. Yu, L. F., Zhang, S. M., Zhang, M., & Chen, J. D. (2017). Superhydrophobicity construction with dye-sensitised TiO2 on fabric surface for both oil/water separation and water bulk contaminants purification. Applied Surface Science, 425, 46−55.Google Scholar
  63. Zhang, J. L., Yang, H. J., Shen, G. X., Cheng, P., Zhang, J. Y., & Guo, S. W. (2010). Reduction of graphene oxide via L-ascorbic acid. Chemical Communications, 46(7), 1112−1114.Google Scholar
  64. Zhang, W., Li, X. L., Yang, Z., Tang, X. M., Ma, Y. J., Li, M., Hu, N. T., Wei, H., & Zhang, Y. F. (2016a). In situ preparation of cubic Cu2O-RGO nanocomposites for enhanced visible-light degradation of methyl orange. Nanotechnology, 27, 265703.CrossRefGoogle Scholar
  65. Zhang, Z. H., Zhai, S. Y., Wang, M. H., Ji, H. F., He, L. H., Ye, C. M., Wang, C. B., Fang, S. M., & Zhang, H. Z. (2016b). Photocatalytic degradation of rhodamine B by using a nanocomposite of cuprous oxide, three-dimensional reduced graphene oxide, and nanochitosan prepared via one-pot synthesis. Journal of Alloys Compounds, 659, 101–111.CrossRefGoogle Scholar
  66. Zhou, K. Q., Shi, Y. Q., Jiang, S. H., Hu, Y., & Gui, Z. (2013). Facile preparation of Cu2O/carbon sphere heterostructure with high photocatalytic activity. Materials Letters, 98, 213–216.CrossRefGoogle Scholar
  67. Zou, W. X., Zhang, L., Liu, L. C., Wang, X. B., Sun, J. F., Wu, S. G., Deng, Y., Tang, C. J., Gao, F., & Dong, L. (2016). Engineering the Cu2O-reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light. Applied Catalysis B Environmental, 181, 495−503.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations