Skip to main content
Log in

Highly Efficient Cuprous Oxide Nanocrystals Assisted with Graphene for Decolorization Using Visible Light

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The preparation of rhombic dodecahedral cuprous oxide (rdCu2O) decorated with various amounts of reduced graphene oxide (rGO) is carried out by using a wet-chemical route. The resultant nanocomposites (denoted as rdCu2O-xrGO, x = amounts of rGO) possess unique crystal facets of Cu2O and superior electronic properties of rGO, which are tested as photocatalysts in the degradation of methyl orange (MO) under visible light irradiation. Among all the rdCu2O-xrGO photocatalysts, the rdCu2O-1rGO is found to degrade ca. 98% of MO in the presence of very low catalyst concentration (0.0625 g L−1) within 120 min under visible light illumination. This obtained result may be owing to the well interfacial contact of rhombic dodecahedral Cu2O nanoparticles with high electronic conductivity of rGO sheets that can increase the separation of photo-induced electron-hole pairs, stabilize the Cu2O, and enhance MO adsorption, which are proofed by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence, and UV-Vis diffuse reflection spectroscopy. Most importantly, these efficient photocatalysts can be reusable and retain surpassing photoactivity in terms of MO degradation after cyclic tests, which may provide a possible opportunity for practical applications in purifying wastewater via direct sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altin, I., & Sokmen, M. (2014). Photocatalytic properties of silver incorporated titania nanoparticles immobilized on waste-derived polystyrene. Water, Air, and Soil Pollution, 225(1), 1786.

    Article  Google Scholar 

  • Babu, S. G., Vinoth, R., Narayana, P. S., Bahnemann, D., & Neppolian, B. S. (2015). Reduced graphene oxide wrapped Cu2O supported on C3N4: an efficient visible light responsive semiconductor photocatalyst. APL Materials, 3(10), 104415.

    Article  Google Scholar 

  • Bailón-García, E., Elmouwahidi, A., Álvarez, M. A., Carrasco-Marín, F., Pérez-Cadenas, A. F., & Maldonado-Hóda, F. L. (2017). New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Applied Catalysis B Environmental, 201, 29−40.

    Article  Google Scholar 

  • Bajpai, A. K., Dubey, R., & Bajpai, J. (2017). Synthesis, characterization, and adsorption properties of a graphene composite sand (GCS) and its application in remediation of Hg(II) ions. Water, Air, and Soil Pollution, 228(9), 346.

    Article  Google Scholar 

  • Cai, J. Y., Liu, W. J., & Li, Z. H. (2015). One-pot self-assembly of Cu2O/RGO composite aerogel for aqueous photocatalysis, one-pot self-assembly of Cu2O/RGO composite aerogel for aqueous photocatalysis. Applied Surface Science, 358, 146–151.

    Article  CAS  Google Scholar 

  • Chang, X., Gondal, M. A., Al-Saadi, A. A., Ali, M. A., Shen, H., Zhou, Q., Zhang, J., Du, M., Liu, Y., & Ji, G. (2012). Photodegradation of rhodamine B over unexcited semiconductor compounds of BiOCl and BiOBr. Journal of Colloid Interface Science, 377, 291–298.

    Article  CAS  Google Scholar 

  • Chen, Q. P., Li, J. H., Li, X. J., Huang, K., Zhou, B. X., Cai, W. M., & Shangguan, W. F. (2012). Visible-light responsive photocatalytic fuel cell based on WO3/W photoanode and Cu2O/Cu photocathode for simultaneous wastewater treatment and electricity generation. Environmental Science & Technology, 46(20), 11451–11458.

    Article  CAS  Google Scholar 

  • Choi, H., Shin, D., Yeo, B. C., Song, T., Han, S. S., Park, N., & Kim, S. (2016). Simultaneously controllable doping sites and the activity of a W-N codoped TiO2 photocatalyst. ACS Catalysis, 6(5), 2745−2753.

    Google Scholar 

  • Chowdhury, P., Athapaththu, S., Elkamel, A., & Ray, A. K. (2017). Visible-solar-light-driven photo-reduction and removal of cadmium ion with eosin Y-sensitized TiO2 in aqueous solution of triethanolamine. Separation and Purification Technology, 174, 109−115.

    Article  Google Scholar 

  • Dahl, J. P., & Switendick, A. C. (1966). Energy bands in cuprous oxide. Journal of Physics and Chemistry of Solids, 27(6–7), 931–942.

    Article  CAS  Google Scholar 

  • Das, K., & De, S. K. (2009). Optical and photoconductivity studies of Cu2O nanowires synthesized by solvothermal method. Journal of Luminescence, 129(9), 1015–1022.

    Article  CAS  Google Scholar 

  • El-Sheikh, S. M., Khedr, T. M., Hakki, A., Ismail, A. A., Badawy, W. A., & Bahnemann, D. W. (2017). Visible light activated carbon and co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Separation and Purification Technology, 173, 258−268.

    Article  Google Scholar 

  • Feng, Y., Siow, K. S., Teo, W. K., Tan, K. L., & Hseih, A. K. (1997). Corrosion mechanisms and products of copper in aqueous solutions at various pH values. Corrosion, 53, 389–398.

    Article  CAS  Google Scholar 

  • Gao, Z., Liu, J., Xu, F., Wu, D., Wu, Z., & Jiang, K. (2012). One-pot synthesis of graphene-cuprous oxide composite with enhanced photocatalytic activity. Solid State Science, 14(2), 276–280.

    Article  CAS  Google Scholar 

  • Gonzalez, L. T., Leyva-Porras, C., Sanchez-Dominguez, M., Maza, I. J., & Rodriguez, F. E. L. (2017). Comparative photocatalytic performance on the degradation of 2-naphthol under simulated solar light using alpha-Bi4V2O11 synthesized by solid-state and co-precipitation methods. Water, Air, and Soil Pollution, 228(2), 75.

    Article  Google Scholar 

  • Granbohm, H., Kulmala, K., Lyer, A., Ge, Y. L., & Hannula, S. P. (2017). Preparation and photocatalytic activity of quaternary GO/TiO2/Ag/AgCl nanocomposites. Water, Air, and Soil Pollution, 228(4), –127.

  • Haldar, K. K., Sinha, G., Lahtinen, J., & Patra, A. (2012). Hybrid colloidal Au-CdSe pentapod heterostructures synthesis and their photocatalytic properties. ACS Applied Materials & Interfaces, 4(11), 6266–6274.

    Article  CAS  Google Scholar 

  • Huang, W.-C., Lyu, L.-M., Yang, Y.-C., & Huang, M. H. (2012). Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. Journal of American Chemical Society, 134(2), 1261−1267.

    Article  Google Scholar 

  • Huang, H. J., Zhang, J., Jiang, L., & Zang, Z. G. (2017a). Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B. Journal of Alloys and Compounds, 718, 112−115.

    Google Scholar 

  • Huang, Y., Yan, C. F., Guo, C. Q., Lu, Z. X., Shi, Y., & Wang, Z. D. (2017b). Synthesis of GO-modified Cu2O nanosphere and the photocatalytic mechanism of water splitting for hydrogen production. International Journal of Hydrogen Energy, 42(7), 4007−4016.

    Google Scholar 

  • Kecsenovity, E., Endrodi, B., Toth, P. S., Zou, Y., Dryfe, R. A. W., Rajeshwar, K., & Janaky, C. (2017). Enhanced photoelectrochemical performance of cuprous oxide/graphene nanohybrids. Journal of American Chemical Society, 139(19), 6682−6692.

    Article  Google Scholar 

  • Khurana, I., Saxena, A., Bharti, Khurana, J. M., & Rai, P. K. (2017). Removal of dyes using graphene-based composites: a review. Water, Air, and Soil Pollution, 228(5), 180.

    Article  Google Scholar 

  • Kumar, S., & Ojha, A. K. (2016). Ni, Co and Ni-Co codoping induced modification in shape, optical band gap and enhanced photocatalytic activity of CeO2 nanostructures for photodegradation of methylene blue dye under visible light irradiation. RSC Advance, 6(11), 651–8660.

    Google Scholar 

  • Kumar, S., Parlett, C., Isaacs, M. A., Jowett, D. V., Douthwaite, R. E., Cockett, M. C. R., & Lee, A. F. (2016). Facile synthesis of hierarchical Cu2O nanocubes as visible light. Applied Catalysis B Environmental, 189, 226–232.

    Article  CAS  Google Scholar 

  • Kwon, Y., Soon, A., Han, H., & Lee, H. J. (2015). Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting. Journal of Materials Chemistry A, 3(1), 156−162.

    Google Scholar 

  • Landi, S., Carneiro, J. O., Fernandes, F., Parpot, P., Molina, J., Cases, F., Fernandez, J., Santos, J. G., Soares, G. M. B., Teixeira, V., & Samantilleke, A. P. (2017). Functionalization of cotton by RGO/TiO2 to enhance photodegradation of rhodamine B under simulated solar irradiation. Water, Air, and Soil Pollution, 228(9), 335.

    Article  Google Scholar 

  • Leon, D. E., Zuniga-Benitez, H., Penuela, G. A., & Mansilla, H. D. (2017). Photocatalytic removal of the antibiotic cefotaxime on TiO2 and ZnO suspensions under simulated sunlight radiation. Water, Air, and Soil Pollution, 228(9), 361.

    Article  Google Scholar 

  • Li, H. Q., Hong, W. S., Cui, Y. M., Hu, X. Y., Fang, S. H., & Zhu, L. (2014). Enhancement of the visible light photocatalytic activity of Cu2O/BiVO4 catalysts synthesized by ultrasonic dispersion method at room temperature. Materials Science Engineering B, 181, 1–8.

    Article  CAS  Google Scholar 

  • Li, F., Zhang, L., Tong, J. C., Liu, Y. L., Xu, S. G., Cao, Y., & Cao, S. K. (2016). Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor. Nano Energy, 27, 320−329.

    Google Scholar 

  • Liu, S.-H., & Syu, H.-R. (2012). One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light. Applied. Energy, 100, 148−154.

    Google Scholar 

  • Liu, S.-H., & Syu, H.-R. (2013). High visible-light photocatalytic hydrogen evolution of C,N-codoped mesoporous TiO2 nanoparticles prepared via an ionic-liquid template approach. International Journal of Hydrogen Energy, 38(32), 13856–13865.

    Article  CAS  Google Scholar 

  • Liu, G. G., He, F., Li, X. Q., Wang, S. H., Li, L. J., Zuo, G. F., Huang, Y., & Wan, Y. Z. (2011). Three dimensional cuprous oxide microtube lattices with high catalytic activity templated by bacterial cellulose nanofibers. Journal of Materials Chemistry, 21(29), 10637–10640.

    Article  CAS  Google Scholar 

  • Liu, S.-H., Syu, H.-R., & Wu, C.-Y. (2014). Alcohol solvents evaporation-induced self-assembly synthesis of mesoporous TiO2-x-yC x N y nanoparticles toward visible-light driven photocatalytic activity. Journal of Nanoparticle Research, 16(12), 2750.

    Article  Google Scholar 

  • Liu, S.-H., Wei, Y.-S., & Lu, J.-S. (2016a). Visible-light-driven photodegradation of sulfamethoxazole and methylene blue by Cu2O/rGO photocatalysts. Chemosphere, 154, 118–123.

    Article  CAS  Google Scholar 

  • Liu, X. W., Shen, L. Y., & Hu, Y. H. (2016b). Preparation of TiO2-graphene composite by a two-step solvothermal method and its adsorption-photocatalysis property. Water, Air, and Soil Pollution, 227(5), 141.

    Article  Google Scholar 

  • Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & Garcia, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B Environmental, 201, 582–590.

    Article  CAS  Google Scholar 

  • Mayorov, A. S., Gorbachev, R. V., Morozov, S. V., Britnell, L., Jalil, R., Ponomarenko, L. A., Blake, P., Novoselov, K. S., Watanabe, K., Taniguchi, T., & Giem, A. K. (2011). Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Letters, 11(6), 2396–2399.

    Article  CAS  Google Scholar 

  • Nadarajan, R., Abu Bakar, W. A. W., Ali, R., & Ismail, R. (2016). Effect of structural defects towards the performance of TiO2/SnO2/WO3 photocatalyst in the degradation of 1,2-dichlorobenzene. Journal of the Taiwan Institute of Chemical Engineers, 64, 106−115.

    Article  Google Scholar 

  • Nalbandian, M. J., Greenstein, K. E., Shuai, D. M., Zhang, M. L., Choa, Y. H., Parkin, G. F., Myung, N. V., & Cwiertny, D. M. (2015). Tailored synthesis of photoactive TiO2 nanofibers and Au/TiO2 nanofiber composites: structure and reactivity optimization for water treatment applications. Environmental Science & Technology, 49(3), 1654−1663.

    Article  Google Scholar 

  • Nethravathi, C., & Rajamathi, M. (2008). Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon, 46(14), 1994–1998.

    Article  CAS  Google Scholar 

  • Niu, Z. G. (2014). Reduced graphene oxide-cuprous oxide hybrid nanopowders: hydrothermal synthesis and enhanced photocatalytic performance under visible light irradiation. Materials Science in Semiconductor Processing, 23, 78–84.

    Article  CAS  Google Scholar 

  • Ojha, D. P., Joshi, M. K., & Kim, H. J. (2017). Photo-fenton degradation of organic pollutants using a zinc oxide decorated iron oxide/reduced graphene oxide nanocomposite. Ceramics International, 43(1, 1290–1297.

    Article  Google Scholar 

  • Petronella, F., Truppi, A., Ingrosso, C., Placido, T., Striccoli, M., Curri, M. L., Agostiano, A., & Comparelli, R. (2017). Nanocomposite materials for photocatalytic degradation of pollutants. Catalysis Today, 2017(281), 85−100.

    Google Scholar 

  • Pu, Y.-C., Chou, H.-Y., Kuo, W.-S., Wei, K.-H., & Hsu, Y.-J. (2017). Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide (Cu2O-rGO) nanoheterostructures and their related visible light-driven photocatalysis. Applied Catalysis B Environmental, 204, 21−32.

    Article  Google Scholar 

  • Reddy, P. A. K., Reddy, P. V. L., Kwon, E., Kim, K. H., Akter, T., & Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media. Environment International, 91, 94–103.

    Article  CAS  Google Scholar 

  • Shang, Y., & Guo, L. (2015). Facet-controlled synthetic strategy of Cu2O-based crystals for catalysis and sensing. Advanced Science, 2(10), 1500140.

    Article  Google Scholar 

  • Shen, B., Zhang, Y. H., An, Q., Yu, L., & Shang, J. W. (2015). Cu2O immobilized on reduced graphene oxide for the photocatalytic treatment of red water produced from the manufacture of TNT. Desalination and Water Treatment, 54(2), 540−546.

    Article  Google Scholar 

  • Stankovich, S., Dikin, D. A. R., Piner, D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558−1565.

    Article  Google Scholar 

  • Stoller, M. D., Park, S., Zhu, Y., An, J., & Ruoff, R. S. (2008). Graphene-based ultracapacitors. Nano Letters, 8(10), 3498–3502.

    Article  CAS  Google Scholar 

  • Su, F. Y., Xu, C. Q., Yu, Y. X., & Zhang, W. D. (2016). Carbon self-doping induced activation of n-pi* electronic transitions of g-C3N4 nanosheets for efficient photocatalytic H2 evolution. ChemCatChem, 8(22), 3527−3535.

    Article  Google Scholar 

  • Sun, S. D. (2015). Recent advances in hybrid Cu2O-based heterogeneous nanostructures. Nanoscale, 7(25), 10850–10882.

    Article  CAS  Google Scholar 

  • Tan, L. L., Ong, W. J., Chai, S. P., Goh, B. T., & Mohamed, A. R. (2015). Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Applied Catalysis B Environmental, 179, 160–170.

    Article  CAS  Google Scholar 

  • Tangale, N. P., Belhekar, A. A., Kale, K. B., & Awate, S. V. (2014). Enhanced mineralization of gaseous organic pollutant by photo-oxidation using Au-doped TiO2/MCM-41. Water, Air, and Soil Pollution, 225(2), 1847.

    Article  Google Scholar 

  • Tao, S., Yang, M., Chen, H. H., Ren, M. Y., & Chen, G. W. (2017). Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity. Journal of Colloid Interface Science, 486, 16−26.

    Article  Google Scholar 

  • Wang, W. Z., Wang, G. H., Wang, X. S., Zhan, Y. J., Liu, Y. K., & Zheng, C. L. (2002). Synthesis and characterization of Cu2O nanowires by a novel reduction route. Advanced Materials, 14(1), 67−69.

    Article  Google Scholar 

  • Wang, M. Y., Huang, J. R., Tong, Z. W., Li, W. H., & Chen, J. (2013). Reduced graphene oxide-cuprous oxide composite via facial deposition for photocatalytic dye-degradation. Journal of Alloys Compounds, 568, 26–35.

    Article  CAS  Google Scholar 

  • Wang, J. T. W., Ball, J. M., Barea, E. M., Abate, A., Alexander-Webber, J. A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., Snaith, H. J., & Nicholas, R. J. (2014). Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Letters, 14(2), 724–730.

    Article  CAS  Google Scholar 

  • Wu, T., Liu, G., Zhao, J., Hidaka, H., & Serpone, N. (1998). Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. Journal of Physical Chemistry B, 102(30), 5845–5851.

    Article  CAS  Google Scholar 

  • Xu, C., Cao, L. X., Su, G., Liu, W., Liu, H., Yu, Y. Q., & Qu, X. F. (2010). Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. Journal of Hazardous Materials, 176, 807–813.

    Article  CAS  Google Scholar 

  • Xu, L., Zhang, F. Y., Song, X. Y., Yin, Z. L., & Bu, Y. X. (2015). Construction of reduced graphene oxide-supported Ag-Cu2O composites with hierarchical structures for enhanced photocatalytic activities and recyclability. Journal of Materials Chemistry A, 3, 5923−5933.

    Google Scholar 

  • Yeo, B. E., Cho, Y. S., & Huh, Y. D. (2017). Evolution of the morphology of Cu2O microcrystals: cube to 50-facet polyhedron through beveled cube and rhombicuboctahedron. CrystEngComm, 19(12), 1627–1632.

    Article  CAS  Google Scholar 

  • Yu, L. F., Zhang, S. M., Zhang, M., & Chen, J. D. (2017). Superhydrophobicity construction with dye-sensitised TiO2 on fabric surface for both oil/water separation and water bulk contaminants purification. Applied Surface Science, 425, 46−55.

    Google Scholar 

  • Zhang, J. L., Yang, H. J., Shen, G. X., Cheng, P., Zhang, J. Y., & Guo, S. W. (2010). Reduction of graphene oxide via L-ascorbic acid. Chemical Communications, 46(7), 1112−1114.

    Google Scholar 

  • Zhang, W., Li, X. L., Yang, Z., Tang, X. M., Ma, Y. J., Li, M., Hu, N. T., Wei, H., & Zhang, Y. F. (2016a). In situ preparation of cubic Cu2O-RGO nanocomposites for enhanced visible-light degradation of methyl orange. Nanotechnology, 27, 265703.

    Article  Google Scholar 

  • Zhang, Z. H., Zhai, S. Y., Wang, M. H., Ji, H. F., He, L. H., Ye, C. M., Wang, C. B., Fang, S. M., & Zhang, H. Z. (2016b). Photocatalytic degradation of rhodamine B by using a nanocomposite of cuprous oxide, three-dimensional reduced graphene oxide, and nanochitosan prepared via one-pot synthesis. Journal of Alloys Compounds, 659, 101–111.

    Article  CAS  Google Scholar 

  • Zhou, K. Q., Shi, Y. Q., Jiang, S. H., Hu, Y., & Gui, Z. (2013). Facile preparation of Cu2O/carbon sphere heterostructure with high photocatalytic activity. Materials Letters, 98, 213–216.

    Article  CAS  Google Scholar 

  • Zou, W. X., Zhang, L., Liu, L. C., Wang, X. B., Sun, J. F., Wu, S. G., Deng, Y., Tang, C. J., Gao, F., & Dong, L. (2016). Engineering the Cu2O-reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light. Applied Catalysis B Environmental, 181, 495−503.

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports of this work from the Ministry of Science and Technology of Taiwan (Contract No.: MOST 104-2628-E-006-018-MY3) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-Heng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SH., Yang, SW. Highly Efficient Cuprous Oxide Nanocrystals Assisted with Graphene for Decolorization Using Visible Light. Water Air Soil Pollut 229, 67 (2018). https://doi.org/10.1007/s11270-018-3728-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3728-y

Keywords

Navigation