Skip to main content
Log in

Preparation of a Phosphate-Modified Flower-Like α-FeOOH Composite and Its Application for Aqueous U(VI) Removal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Goethite is a stable and widespread mineral in soil, which affects the transportation and immobilization of heavy metals in soil. Here, the three-dimensional flower-like goethite (TDFLG) was synthesized by refluxing precipitation method. The modified three-dimensional flower-like goethite (MTDFLG) was prepared by NaH2PO4 with dipping method. The obtained samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, N2 adsorption–desorption (BET), and X-ray diffraction (XRD). SEM images showed that the modification of phosphate had no major changes on the morphology of the original sample and the morphology of MTDFLG after adsorbed U(VI) had clearly change. For the goethite and modified goethite, the BET-specific surface area was 229.96 and 203.17 m2/g, respectively. Moreover, the effects of adsorption time, sorbent dose, solution pH, and initial uranium concentration on the uranium adsorption behaviors were investigated using the two materials as adsorbent for the treatment of uranium-containing wastewater. The results showed that MTDFLG had better adsorption capacity than TDFLG on uranium. The increase in uranium removal on MTDFLG was due to the formation of ternary surface complexes (≡FePO4UO2). TDFLG and MTDFLG followed the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model, which indicated that uranium adsorption on TDFLG or MTDFLG is mainly based on chemisorption, and the maximum adsorption capacity of two adsorbents is 48.24 and 112.36 mg/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bakatula, E. N., Molaudzi, R., Nekhunguni, P., & Tutu, H. (2017). The removal of arsenic and uranium from aqueous solutions by sorption onto iron oxide-coated zeolite (IOCZ). Water Air Soil & Pollution, 228, 1–14.

    Article  Google Scholar 

  • Bhalara, P. D., Punetha, D., & Balasubramanian, K. (2014). A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. Journal of Environmental Chemical Engineering, 2, 1621–1634.

    Article  CAS  Google Scholar 

  • Bjørklund, G., Albert, C. O., Chirumbolo, S., Selinus, O., & Aaseth, J. (2017). Recent aspects of uranium toxicology in medical geology. Environmental Research, 156, 526–533.

    Article  Google Scholar 

  • Cao, Q., Liu, Y. C., Wang, C. Z., & Cheng, J. S. (2013). Phosphorus-modified poly(styrene-co-divinylbenzene)–PAMAM chelating resin for the adsorption of uranium(VI) in aqueous. Journal of Hazardous Materials, 263(2), 311–321.

    Article  CAS  Google Scholar 

  • Chen, Y. H., & Li, F. A. (2010). Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. Journal of Colloid & Interface Science., 347(2), 277–281.

    Article  CAS  Google Scholar 

  • Chen, Y., Peng, J. D., Xiao, H., Peng, H. J., Bu, L. L., Pan, Z. Y., He, Y., Chen, F., Wang, X., & Li, S. Y. (2017). Adsorption behavior of hydrotalcite-like modified bentonite for Pb2+, Cu2+and methyl orange removal from water. Applied Surface Science, 420, 773–781.

    Article  CAS  Google Scholar 

  • Cheng, T., Barnett, M. O., Roden, E. E., & Zhuang, J. L. (2004). Effects of phosphate on uranium(VI) adsorption to goethite-coated sand. Environmental Science and Technology, 38, 6059–6065.

    Article  CAS  Google Scholar 

  • Degueldre, C. (2017). Uranium as a renewable for nuclear energy. Progress in Nuclear Energy, 94, 174–186.

    Article  CAS  Google Scholar 

  • Guo, Y. H., & Zhang, Y. (1997). Preparation and surface chemistry characteristics of pure and coated acicular α-FeOOH particles. Materials Chemistry and Physics, 47, 211–216.

    Article  CAS  Google Scholar 

  • Guo, Z. J., Li, Y., & Wu, W. S. (2009). Sorption of U(VI) on goethite: effects of pH, ionic strength, phosphate, carbonate and fulvic acid. Applied Radiation and Isotopes, 67, 996–1000.

    Article  CAS  Google Scholar 

  • Hua, M., Zhang, S. J., Pan, B. C., Zhang, W. M., Lv, L., & Zhang, Q. X. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211–212, 317–331.

    Article  Google Scholar 

  • Li, H., Li, W., Zhang, Y. J., Wang, T. S., Wang, B., Xu, W., Jiang, L., Song, W. G., Shu, C. Y., & Wang, C. R. (2011). Chrysanthemum-like α-FeOOH microspheres produced by a simple green method and their outstanding ability in heavy metal ion removal. Journal of Materials Chemistry, 21(22), 7878–7881.

    Article  CAS  Google Scholar 

  • Liu, F., Jie, X. L., He, J. Z., Zhou, D. H., Xu, F. L., & Li, X. Y. (1997). Coordination forms and transformations of phosphate adsorbed by goethite surface on different pH. Acta Pedologica Sinica, 34(4), 367–374.

    CAS  Google Scholar 

  • Liu, H., Chen, T., & Frost, R. L. (2014). An overview of the role of goethite surfaces in the environment. Chemosphere, 103, 1–11.

    Article  Google Scholar 

  • Liu, Y., Liu, X., Zhao, Y., & Dionysiou, D. D. (2017). Aligned α-FeOOH nanorods anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective Fenton-like oxidation catalyst. Applied Catalysis B: Environmental, 213, 74–86.

    Article  CAS  Google Scholar 

  • Mehta, V. S., Maillot, F., Wang, Z., Catalano, J. G., & Giammar, D. E. (2015). Transport of U(VI) through sediments amended with phosphate to induce in situ uranium immobilization. Water Research, 69, 307–317.

    Article  CAS  Google Scholar 

  • Morsy, A. M. A. (2015). Adsorptive removal of uranium ions from liquid waste solutions by phosphorylated chitosan. Environmental Technology & Innovation, 4, 299–310.

    Article  Google Scholar 

  • Ni, C. Y., Liu, S., Wang, H. L., Liu, H., & Chen, R. F. (2017). Studies on adsorption characteristics of Al-free and Al-substituted goethite for heavy metal ion Cr(VI). Water Air Soil Pollution, 228, 1–10.

    Article  Google Scholar 

  • Orabi, A. H., El-Sheikh, E. M., Saleh, W. H., Youssef, A. O., El-Kady, M. Y., & Shalaby, Z. M. (2016). Potentiality of uranium adsorption from wet phosphoric acid using amine-impregnated cellulose. Journal of Radiation Research and Applied Sciences, 9(2), 193–206.

    Article  CAS  Google Scholar 

  • Rahnemaie, R., Hiemstra, T., & Riemsdijk, W. H. V. (2007). Carbonate adsorption on goethite in competition with phosphate. Journal of Colloid and Interface Science, 315, 415–425.

    Article  CAS  Google Scholar 

  • Ren, X., Wang, S., Yang, S., & Li, J. (2009). Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite. Journal of Radioanalytical & Nuclear Chemistry, 283, 253–259.

    Article  Google Scholar 

  • Sadeghi, S., Azhdari, H., Arabi, H., & Moghaddam, Z. A. (2012). Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. Journal of Hazardous Materials, 2, 208–216.

    Article  Google Scholar 

  • Salameh, S. I. Y., Khalili, F. I., & Al-Dujaili, A. H. (2017). Removal of U(VI) and Th(IV) from aqueous solutions by organically modified diatomaceous earth: Evaluation of equilibrium, kinetic and thermodynamic data. International Journal of Mineral Processing, 168, 9–18.

    Article  CAS  Google Scholar 

  • Schierz, A., & Zänker, H. (2009). Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environmental Pollution, 157, 1088–1094.

    Article  CAS  Google Scholar 

  • Seshadri, B., Bolan, N. S., Choppala, G., Kunhikrishnan, A., Sanderson, P., Wang, H., Currie, L. D., Tsang, D. C. W., Ok, Y. S., & Kim, G. (2017). Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere, 184, 197–206.

    Article  CAS  Google Scholar 

  • Shan, X. L., Guo, X. T., Yin, Y. Y., Miao, Y., & Dong, H. (2017). Surface modification of graphene oxide by goethite with enhanced tylosin photocatalytic activity under visible light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 420–427.

    Article  CAS  Google Scholar 

  • Sherman, D. M., Peacock, C. L., & Hubbard, C. G. (2008). Surface complexation of U(VI) on goethite (a-FeOOH). Geochimica et Cosmochimica Acta, 72, 298–310.

    Article  CAS  Google Scholar 

  • Singh, A., Ulrich, K. U., & Giammar, D. E. (2010). Impact of phosphate on U(VI) immobilization in the presence of goethite. Geochimica et Cosmochimica Acta, 74, 6324–6343.

    Article  CAS  Google Scholar 

  • Sprynskyy, M., Kowalkowski, T., Tutu, H., Cukrowska, E. M., & Buszewski, B. (2011). Adsorption performance of talc for uranium removal from aqueous solution. Chemical Engineering Journal, 171, 1185–1193.

    Article  CAS  Google Scholar 

  • Tiya-Djowe, A., Laminsi, S., Noupeyi, G. L., & Gaigneaux, E. M. (2015). Non-thermal plasma synthesis of sea-urchin like -FeOOH for the catalytic oxidation of Orange II in aqueous solution. Applied Catalysis B: Environmental, 176, 99–106.

    Article  Google Scholar 

  • Wang, B., Wu, H. B., Yu, L., Xu, R., Lim, T. T., & Lou, X. W. (2012). Template-free formation of uniform urchin-like α-FeOOH hollow spheres with superior capability for water treatment. Advanced Materials, 24(8), 1111–1116.

    Article  CAS  Google Scholar 

  • Wang, F., Liu, Q., Li, R., Li, Z., Zhang, H., Liu, L., & Wang, J. (2016). Selective adsorption of uranium(VI) onto prismatic sulfides from aqueous solution. Colloids & Surfaces A Physicochemical & Engineering Aspects, 490, 215–221.

    Article  CAS  Google Scholar 

  • Wei, Y., Zhang, L., Shen, L., & Hua, D. (2016). Positively charged phosphonate-functionalized mesoporous silica for efficient uranium sorption from aqueous solution. Journal of Molecular Liquids, 221, 1231–1236.

  • Xu, J. G., Li, Y. Q., Yuan, B. L., Cui, H. J., & Fu, M. L. (2015). Synthesis and characterization of 3 D flower -like α-FeOOH nanostructures. Chemical Journal of Chinese Universities, 36, 48–54.

    CAS  Google Scholar 

  • Yakout, A. A., El-Sokkary, R. H., Shreadah, M. A., & Hamid, O. G. A. (2017). Cross-linked graphene oxide sheets via modified extracted cellulose with high metal adsorption. Carbohydrate Polymers., 172, 20–27.

    Article  CAS  Google Scholar 

  • Yusan, S., & Erenturk, S. (2011). Sorption behaviors of uranium (VI) ions on α-FeOOH. Desalination, 269, 58–66.

    Article  CAS  Google Scholar 

  • Zhang, R., Chen, C., Li, J., & Wang, X. (2015). Preparation of montmorillonite@carbon composite and its application for U(VI) removal from aqueous solution. Applied Surface Science, 349, 129–137.

    Article  CAS  Google Scholar 

Download references

Funding

This paper is supported by the double first class construct program of USC (2017SYL05), Hunan Provincial Innovation Foundation For Postgraduate (CX2016B454), and Scientific Research Fund of Hunan Provincial Education Department (15C1196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Jiang, T., Xie, C. et al. Preparation of a Phosphate-Modified Flower-Like α-FeOOH Composite and Its Application for Aqueous U(VI) Removal. Water Air Soil Pollut 229, 58 (2018). https://doi.org/10.1007/s11270-018-3722-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3722-4

Keywords

Navigation