Iron Oxide Nanoparticles Supported on Mesoporous MCM-41 for Efficient Adsorption of Hazardous β-Lactamic Antibiotics

  • Adriana Barbosa Salviano
  • Mariana Rocha Dutra Santos
  • Laura Maia de Araújo
  • Jose Domingos Ardisson
  • Rochel Montero Lago
  • Maria Helena Araujo
Article
  • 30 Downloads

Abstract

In this work, the effect of crystallite size, defects, and surface area of iron oxyhydroxide particles supported on mesoporous MCM-41 on the adsorption of hazardous β-lactamic antibiotics was investigated. Different adsorbents were prepared by impregnation of 5, 10, 20, and 50 wt% of Fe followed by treatment at 150–400 °C. Mössbauer, XRD, BET, TG, FTIR, and Raman analyses suggested that treatment at 150 °C produced a mixture of α-Fe2O3, FeOOH, and highly dispersed Fe3+ species. At higher temperatures, different phases were gradually converted to hematite with crystallite sizes varying from 1 to 5 nm. Both, Fe content and temperature, strongly affected the amoxicillin, cephalexin, and ceftriaxone adsorption at pH 5, 7, and 9, with the best results obtained for the sample 20Fe150 (20% Fe treated at 150 °C), ca. 25 mgAMX g−1 which decreased to 17, 6, and 4 mgAMX g−1 (AMX = amoxicillin) upon treatment at higher temperatures. These results combined with competitive adsorption using AMX/phosphate and H2O2 decomposition experiments suggested that the antibiotic molecules are likely adsorbing by complexation on Fe3+ surface species of poorly crystallized small particles of Fe oxyhydroxide phases. It was observed that below a critical crystallite size of 3 nm, the AMX adsorption was very sensitive and strongly increased.

Keywords

Iron oxide MCM-41 Amoxicillin Adsorption 

Notes

Acknowledgements

We thank the Center of Microscopy at the Universidade Federal de Minas Gerais (http://www.microscopia.ufmg.br) for providing the equipment and technical support for experiments involving electron microscopy. This research used resources of the Brazilian Synchrotron Light Laboratory (LNLS), an open national facility operated by the Brazilian Centre for Research in Energy and Materials (CNPEM) for the MCTIC (Proposal 20160824). The assistance of Alexandre Carvalho, beamline staff is especially acknowledged.

Supplementary material

11270_2017_3652_MOESM1_ESM.docx (802 kb)
ESM 1 (DOCX 802 kb)
11270_2017_3652_Fig14_ESM.gif (97 kb)
ESM 2

(GIF 96 kb)

11270_2017_3652_MOESM2_ESM.tif (19 kb)
High-resolution image (TIFF 18 kb)
11270_2017_3652_Fig15_ESM.gif (296 kb)
ESM 3

(GIF 296 kb)

11270_2017_3652_MOESM3_ESM.tif (63 kb)
High-resolution image (TIFF 63 kb)
11270_2017_3652_Fig16_ESM.gif (218 kb)
ESM 4

(GIF 217 kb)

11270_2017_3652_MOESM4_ESM.tif (45 kb)
High-resolution image (TIFF 45 kb)
11270_2017_3652_Fig17_ESM.gif (216 kb)
ESM 5

(GIF 216 kb)

11270_2017_3652_MOESM5_ESM.tif (100 kb)
High-resolution image (TIFF 100 kb)
11270_2017_3652_Fig18_ESM.gif (150 kb)
ESM 6

(GIF 149 kb)

11270_2017_3652_MOESM6_ESM.tif (28 kb)
High-resolution image (TIFF 28 kb)
11270_2017_3652_Fig19_ESM.gif (153 kb)
ESM 7

(GIF 152 kb)

11270_2017_3652_MOESM7_ESM.tif (62 kb)
High-resolution image (TIFF 62 kb)
11270_2017_3652_Fig20_ESM.gif (132 kb)
ESM 8

(GIF 132 kb)

11270_2017_3652_MOESM8_ESM.tif (26 kb)
High-resolution image (TIFF 25 kb)
11270_2017_3652_Fig21_ESM.gif (140 kb)
ESM 9

(GIF 140 kb)

11270_2017_3652_MOESM9_ESM.tif (63 kb)
High-resolution image (TIFF 62 kb)
11270_2017_3652_Fig22_ESM.gif (116 kb)
ESM 10

(GIF 116 kb)

11270_2017_3652_MOESM10_ESM.tif (21 kb)
High-resolution image (TIFF 20 kb)
11270_2017_3652_Fig23_ESM.gif (130 kb)
ESM 11

(GIF 130 kb)

11270_2017_3652_MOESM11_ESM.tif (22 kb)
High-resolution image (TIFF 21 kb)
11270_2017_3652_Fig24_ESM.gif (128 kb)
ESM 12

(GIF 128 kb)

11270_2017_3652_MOESM12_ESM.tif (55 kb)
High-resolution image (TIFF 54 kb)
11270_2017_3652_Fig25_ESM.gif (226 kb)
ESM 13

(GIF 225 kb)

11270_2017_3652_MOESM13_ESM.tif (276 kb)
High-resolution image (TIFF 276 kb)

References

  1. Kim, J., Li, W., Philips, B. L., & Grey, C. P. (2011). Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): a 31P NMR study. Energy & Environmental Science, 4, 4298–4305.  https://doi.org/10.1039/c1ee02093e.CrossRefGoogle Scholar
  2. Abouaitah, K.E.A., Farghali, A.F. , Swiderska-Sroda, A., Lojkowsi, W., Razin, A.M., & Khedr, M.H. (2016). Mesoporous silica materials in drug delivery system: pH/glutathione-responsive release of poorly water-soluble pro-drug quercetin from two and three-dimensional pore-structure nanoparticles. Journal of Nanomedicine Nanotechnology, 7.  https://doi.org/10.4172/2157-7439.1000360.
  3. Adriano, W. S., Veredas, V., Santana, C. C., & Gonçalves, L. R. B. (2005). Adsorption of amoxicillin on chitosan beads: kinetics, equilibrium and validation of finite bath models. Biochemical Engineering Journal, 27, 132–137.  https://doi.org/10.1016/j.bej.2005.08.010.CrossRefGoogle Scholar
  4. Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. S. (2015). Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci. Total Environ., 532, 112–126.  https://doi.org/10.1016/j.scitotenv.2015.05.130.CrossRefGoogle Scholar
  5. Ay, F., & Kargi, F. (2010). Advanced oxidation of amoxicillin by Fenton’s reagent treatment. Journal of Hazardous Materials, 179, 622–627.  https://doi.org/10.1016/j.jhazmat.2010.03.048.CrossRefGoogle Scholar
  6. Barrera, D., Villarroel-Rocha, J., Tara, J. C., Basaldella, E. I., & Sapag, K. (2014). Synthesis and textural characterization of a templated nanoporous carbon from MCM-22 zeolite and its use as adsorbent of amoxicillin and ethinylestradiol. Adsorption, 20, 967–976.  https://doi.org/10.1007/s10450-014-9640-x.CrossRefGoogle Scholar
  7. Becker, D., Della Giustina, S. V., Rodriguez-Mozaz, S., Schoevaart, R., Barcelo, D., de Cazes, M., Belleville, M. P., Sanchez-Marcano, J., de Gunzburg, J., Couillerot, O., Völker, J., Oehlmann, J., & Wagner, M. (2016). Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase—degradation of compounds does not always eliminate toxicity. Bioresource Technology, 219, 500–509.  https://doi.org/10.1016/j.biortech.2016.08.004.CrossRefGoogle Scholar
  8. Carrillo, A. I., Serrano, E., Luque, R., & Garcia-Martinez, J. (2013). Microwave-assisted catalysis by iron oxide nanoparticles on MCM-41: effect of the support morphology. Applied Catalysis A: General, 453, 383–390.  https://doi.org/10.1016/j.apcata.2012.12.041.CrossRefGoogle Scholar
  9. Carvalho, A., Araújo, D., Canova, H., Rodella, C., Barrett, D., Cuffini, S., Costa, R., & Nunes, R. (2016). X-ray powder diffraction at the XRD1 beamline at LNLS. J. Synchrotron Rad., 23, 1501–1506.  https://doi.org/10.1107/S1600577516012686.CrossRefGoogle Scholar
  10. Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., & Hirotsu, T. (2006). Phosphate adsorption on synthetic goethite and akaganeite. Journal of Colloid and Interface Science, 298, 602–608.  https://doi.org/10.1016/j.jcis.2005.12.054.CrossRefGoogle Scholar
  11. Colomban, P. (2011). Potential and drawbacks of Raman (micro)spectrometry for the understanding of iron and steel corrosion. New Trends Dev. Automot. Syst. Eng., 567–584.  https://doi.org/10.5772/13436.
  12. R.M. Cornell, U. Schwertmann (2003). The iron oxides: structure, proprieties, reactions, occurrences and uses.CrossRefGoogle Scholar
  13. Costa, R. C. C., Moura, F. C. C., Oliveira, P. E. F., Magalhaes, F., Ardisson, J. D., & Lago, R. M. (2010). Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI). Chemosphere, 78, 1116–1120.  https://doi.org/10.1016/j.chemosphere.2009.12.032.CrossRefGoogle Scholar
  14. Darweesh, T. M., & Ahmed, M. J. (2017). Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column. Ecotoxicology and Environmental Safety, 138, 139–145.  https://doi.org/10.1016/j.ecoenv.2016.12.032.CrossRefGoogle Scholar
  15. El Najjar, N. H., Touffet, A., Deborde, M., Journel, R., & Leitner, N. K. V. (2013). Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity. Chemosphere, 93, 604–611.  https://doi.org/10.1016/j.chemosphere.2013.05.086.CrossRefGoogle Scholar
  16. Grün, M., Unger, K. K., Matsumoto, A., & Tsutsumi, K. (1999). Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous and Mesoporous Materials, 27, 207–216.  https://doi.org/10.1016/S1387-1811(98)00255-8.CrossRefGoogle Scholar
  17. Han, B., Zhang, F., Feng, Z., Liu, S., Deng, S., Wang, Y., & Wang, Y. (2014). A designed Mn2O3/MCM-41 nanoporous composite for methylene blue and rhodamine B removal with high efficiency. Ceramics International, 40, 8093–8101.  https://doi.org/10.1016/j.ceramint.2013.12.163.CrossRefGoogle Scholar
  18. Johnson, A. C., Keller, V., Dumont, E., & Sumpter, J. P. (2015). Assessing the concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers. Sci. Total Environ., 511, 747–755.  https://doi.org/10.1016/j.scitotenv.2014.12.055.CrossRefGoogle Scholar
  19. Kanakaraju, D., Kockler, J., Motti, C. A., Glass, B. D., & Oelgemöller, M. (2015). Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Applied Catalysis B: Environmental, 166-167, 45–55.  https://doi.org/10.1016/j.apcatb.2014.11.001.CrossRefGoogle Scholar
  20. Kerkez-Kuyumcu, Ö., Bayazit, Ş. S., & Salam, M. A. (2015). Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. Journal of Industrial and Engineering Chemistry, 36, 198–205.  https://doi.org/10.1016/j.jiec.2016.01.040.CrossRefGoogle Scholar
  21. Kumar, A. S., Sornambikai, S., Deepika, L., & Zen, J.-M. (2010). Highly selective immobilization of amoxicillin antibiotic on carbon nanotube modified electrodes and its antibacterial activity. Journal of Materials Chemistry, 20, 10152.  https://doi.org/10.1039/c0jm02262d.CrossRefGoogle Scholar
  22. Liang, Z. J., Zhaob, Z. W., Sun, T. Y., Shi, W. X., & Cui, F. Y. (2016). Adsorption of quinolone antibiotics in spherical mesoporous silica: effects of the retained template and its alkyl chain length. Journal of Hazardous Materials, 305, 8–14.  https://doi.org/10.1016/j.jhazmat.2015.11.033.CrossRefGoogle Scholar
  23. Liu, M. M., Hou, L. A., Yu, S. L., Xi, B. D., Zhao, Y., & Xia, X. F. (2013). MCM-41 impregnated with a zeolite precursor: synthesis, characterization and tetracycline antibiotics removal from aqueous solution. Chemical Engineering Journal, 223, 678–687.  https://doi.org/10.1016/j.cej.2013.02.088.CrossRefGoogle Scholar
  24. Liu, J. C., Lu, G. H., Xie, Z. X., Zhang, Z. H., Li, S., & Yan, Z. H. (2015). Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants. Sci. Total Environ., 511, 54–62.  https://doi.org/10.1016/j.scitotenv.2014.12.033.CrossRefGoogle Scholar
  25. Long, S., Zhou, S., Yang, F., Lu, K., Xi, T., & Kong, Y. (2016). An iron-based micropore-enriched silica catalyst: in situ confining of Fe2O3 in the mesopores and its improved catalytic properties. RSC Advances, 6, 76064–76074.  https://doi.org/10.1039/c6ra13146h.CrossRefGoogle Scholar
  26. Maria, G., Stoica, A. I., Luta, I., Stirbet, D., & Radu, G. L. (2012). Cephalosporin release from functionalized MCM-41 supports interpreted by various models. Microporous and Mesoporous Materials, 162, 80–90.  https://doi.org/10.1016/j.micromeso.2012.06.013.CrossRefGoogle Scholar
  27. Martín, A., García, R. A., Karaman, D. S., & Rosenholm, J. M. (2014). Polyethyleneimine-functionalized large pore ordered silica materials for poorly water-soluble drug delivery. Journal of Materials Science, 49, 1437–1447.  https://doi.org/10.1007/s10853-013-7828-1.CrossRefGoogle Scholar
  28. Mohammadi, A., Kazemipour, M., Ranjbar, H., Walker, R. B., & Ansari, M. (2014). Amoxicillin removal from aqueous media using multi-walled carbon nanotubes. Fuller Nanotub Car N., 23, 165–169.  https://doi.org/10.1080/1536383X.2013.866944.CrossRefGoogle Scholar
  29. Moura, F.C.C., Ardisson, J.D., Macedo, W.A.A., Albuquerque, A.S. & Lago, R.M.(2007). Investigation of the solid state reaction of LaMnO3 with Fe0 and its effect on the catalytic reactions with H2O2. 18, 322–329.  https://doi.org/10.1016/j.apcatb.2014.04.010.
  30. Moura, F. C. C., Tristão, J. C., Pereira, M. C., Lago, R. M., & Fabris, J. D. (2008). Controlled reduction of LaFex Mny Moz O3/Al2O3 composites to produce highly dispersed and stable Fe0 catalysts: a Mössbauer investigation. Int. J. Appl. or Innov. Eng. Manag., 11, 233–238.  https://doi.org/10.1021/ie970870y.Google Scholar
  31. Nastase, S., Bajenaru, L., Matei, C., Mitran, R. A., & Berger, D. (2013). Ordered mesoporous silica and aluminosilicate-type matrix for amikacin delivery systems. Microporous and Mesoporous Materials, 182, 32–39.  https://doi.org/10.1016/j.micromeso.2013.08.018.CrossRefGoogle Scholar
  32. Ncibi, M. C., & Sillanpää, M. (2015). Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. Journal of Hazardous Materials, 298, 102–110.  https://doi.org/10.1016/j.jhazmat.2015.05.025.CrossRefGoogle Scholar
  33. Nogueira, F. G. E., Lopes, J. H., Silva, A. C., Lago, R. M., Fabris, J. D., & Oliveira, L. C. A. (2011). Catalysts based on clay and iron oxide for oxidation of toluene. Applied Clay Science, 51, 385–389.  https://doi.org/10.1016/j.clay.2010.12.007.CrossRefGoogle Scholar
  34. Ohtsuka, T. (1996). Raman spectra of passive films of iron in neutral borate solution. Materials Transactions, 37, 67–69.CrossRefGoogle Scholar
  35. Ornelas, N. J. R., Aguiar, C. R., Moraes, S. M. O., Adriano, W. S., & Gonçalves, L. R. B. (2010). Activated carbon adsorbent for the aqueous phase adsorption of amoxicillin in a fixed bed. Chemical Engineering and Technology, 33, 658–663.  https://doi.org/10.1002/ceat.200900424.Google Scholar
  36. Pereira, M. C., Tavares, C. M., Fabris, J. D., Lago, R. M., Murad, E., & Criscuolo, P. S. (2007). Characterization of a tropical soil and a waste from kaolin mining and their suitability as heterogeneous catalysts for Fenton and Fenton-like reactions. Clay Minerals, 42, 299–306.  https://doi.org/10.1180/claymin.2007.042.3.03.CrossRefGoogle Scholar
  37. Pereira, J. H. O. S., Reis, A. C., Homem, V., Silva, J. A., Alves, A., Borges, M. T., Boaventura, R. A. R., Vilar, V. J. P., & Nunes, O. C. (2014). Solar photocatalytic oxidation of recalcitrant natural metabolic by-products of amoxicillin biodegradation. Water Research, 65, 307–320.  https://doi.org/10.1016/j.watres.2014.07.037.CrossRefGoogle Scholar
  38. Pinto, P. S., Medeiros, T. P. V., Ardisson, J. D., & Lago, R. M. (2016). Role of [FeOx(OH)y] surface sites on the adsorption of β-lactamic antibiotics on Al2O3 supported Fe oxide. Journal of Hazardous Materials, 317, 327–334.  https://doi.org/10.1016/j.jhazmat.2016.05.095.CrossRefGoogle Scholar
  39. Pouretedal, H. R., & Sadegh, N. (2014). Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J. Water Process Eng., 1, 64–73.  https://doi.org/10.1016/j.jwpe.2014.03.006.CrossRefGoogle Scholar
  40. Purceno, A. D., Teixeira, A. P. C., de Souza, N. J., Fernandez-Outon, L. E., Ardisson, J. D., & Lago, R. M. (2012). Hybrid magnetic amphiphilic composites based on carbon nanotube/nanofibers and layered silicates fragments as efficient adsorbent for ethynilestradiol. Journal of Colloid and Interface Science, 379, 84–88.  https://doi.org/10.1016/j.jcis.2012.04.018.CrossRefGoogle Scholar
  41. Qin, X., Liu, F., Wang, G., Weng, L., & Li, L. (2014). Adsorption of levofloxacin onto goethite: effects of pH, calcium and phosphate. Colloids Surfaces B Biointerfaces., 116, 591–596.  https://doi.org/10.1016/j.colsurfb.2013.09.056.CrossRefGoogle Scholar
  42. Raziye Ferdowsi, S.M.K. & Layali, I. (2015). Treatment of antibiotics from wastewater by adsorption onto low adsorbent. International Journal of Analysis on Pharmaceutical Biomedical Science. 44–50.Google Scholar
  43. Ribeiro-Santos, T. A., Henriques, F. F., Villarroel-Rocha, J., de Castro, M. C. M., Magalhaes, W. F., Windmuller, D., Sapag, K., Lago, R. M., & Araujo, M. H. (2016). Hydrophobic channels produced by micelle-structured CTAB inside MCM-41 mesopores: a unique trap for the hazardous hormone ethinyl estradiol. Chemical Engineering Journal, 283, 1203–1209.  https://doi.org/10.1016/j.cej.2015.08.029.CrossRefGoogle Scholar
  44. Schwanke, A. J., & Pergher, S. B. (2012). Peneiras moleculares mesoporosas MCM-41: uma perspectiva histórica, o papel de cada reagente na síntese e sua caracterização básica. Perspectivas, 36, 113–125.Google Scholar
  45. Teixeira, A. P. C., Purceno, A. D., de Paula, C. C. A., da Silva, J. C. C., Ardisson, J. D., & Lago, R. M. (2013). Efficient and versatile fibrous adsorbent based on magnetic amphiphilic composites of chrysotile/carbon nanostructures for the removal of ethynilestradiol. Journal of Hazardous Materials, 248-249, 295–302.  https://doi.org/10.1016/j.jhazmat.2013.01.014.CrossRefGoogle Scholar
  46. Vallet-Regí, M., Doadrio, J. C., Doadrio, A. L., Izquierdo-Barba, I., & Pérez-Pariente, J. (2004). Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ionics, 172, 435–439.  https://doi.org/10.1016/j.ssi.2004.04.036.CrossRefGoogle Scholar
  47. Wang, S. (2009). Ordered mesoporous materials for drug delivery. Micr. Meso. Mater., 117, 1–9.  https://doi.org/10.1016/j.micromeso.2008.07.002.CrossRefGoogle Scholar
  48. Widyasari-Mehta, A., Hartung, S., & Kreuzig, R. (2016). From the application of antibiotics to antibiotic residues in liquid manures and digestates: A screening study in one European center of conventional pig husbandry. Journal of Environmental Management, 177, 129–137.  https://doi.org/10.1016/j.jenvman.2016.04.012.CrossRefGoogle Scholar
  49. Xu, W. H., Zhang, G., Zou, S. C., Li, X. D., & Liu, Y. C. (2007). Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 145, 672–679.  https://doi.org/10.1016/j.envpol.2006.05.038.CrossRefGoogle Scholar
  50. Zhu, Y., Shi, J., Shen, W., Chen, H., Dong, X., & Ruan, M. (2005). Preparation of novel hollow mesoporous silica spheres and their sustained-release property. Nanotechnol., 16, 2633–2638.  https://doi.org/10.1088/0957-4484/16/11/027.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Adriana Barbosa Salviano
    • 1
  • Mariana Rocha Dutra Santos
    • 1
  • Laura Maia de Araújo
    • 1
  • Jose Domingos Ardisson
    • 2
  • Rochel Montero Lago
    • 1
  • Maria Helena Araujo
    • 1
  1. 1.Departamento de QuímicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Laboratório de Física AplicadaCentro de Desenvolvimento da Tecnologia NuclearBelo HorizonteBrazil

Personalised recommendations