Water, Air, & Soil Pollution

, 228:62 | Cite as

Gaseous Elemental Mercury Level and Distribution in a Heavily Contaminated Site: the Ex-chlor Alkali Plant in Torviscosa (Northern Italy)

  • Alessandro Acquavita
  • Stefano Biasiol
  • Daniel Lizzi
  • Giorgio Mattassi
  • Mariangela Pasquon
  • Nicola Skert
  • Luca Marchiol
Article

Abstract

Mercury (Hg) poses environmental and health risks due to its global distribution and high toxicity exhibited in some of its chemical forms. Although Hg is naturally present in the environment, human activities have increased its cycling among the land, atmosphere and ocean by a factor of three to five comparing the pre-industrial period to the present day. The Torviscosa chlor-alkali plant (CAP), which operated since the beginning of twentieth century, was one of the most important Cl2 production capacity in the Northern Italy and was responsible for an uncontrolled discharge of Hg in the surrounding area. Previous studies reported the high degree of Hg pollution in soils, river sediments and surface waters of the area, but the Hg level in the atmospheric media was never taken into consideration. In this work, an integrated approach was applied with the aim to assess the level, distribution and dispersion of gaseous elemental mercury (GEM) close to the CAP area. GEM levels were monitored by means of four surveys conducted from September 2014 to July 2015, at fixed locations and covering an area of about 10 km2 (including CAP area, Torviscosa village and reclaimed land), accomplished to Hg bioaccumulation measurements in selected lichens. The results indicate that the CAP area currently represents the main source of GEM in the Friuli Venezia Giulia region. The highest levels were found close to the old factory’s buildings (more than 5000 ng m−3), whereas other sites are less impacted. The emission of GEM is not clearly related to the intensity of solar radiation (temperature) at the soil level; however, this latter influences the release from the old buildings employed in the past for the production activities. The most important factor driving the GEM dispersion is the wind, as confirmed by the map of lichens bioaccumulation. In this context, the GEM plume partially affects the nearby village of Torviscosa (about 1 km), but the values found were always well below the international thresholds for residential areas, thus excluding the risk of inhalation for local inhabitants.

Keywords

Gaseous elemental mercury Chlor-alkali plant Lichens Bioaccumulation Spatial variations Torviscosa 

Notes

Acknowledgements

The authors are grateful to Dr. Domenico Perosa who supported the project of monitoring within Caffaro Srl industrial site, Dr. Sergio Nordio of OSMER FVG for providing the main meteorological data of interest for this work and, finally, two anonymous reviewers for their helpful suggestions which permit to improve the quality of this manuscript.

References

  1. Acquavita, A., Covelli, S., Emili, A., Berto, D., Faganeli, J., Giani, M., Horvat, M., Koron, N., & Rampazzo, F. (2012). Mercury in the sediments of the Marano and Grado Lagoon (Northern Adriatic Sea): sources, distribution and speciation. Estuarine, Coastal and Shelf Science, 13, 20–31.CrossRefGoogle Scholar
  2. Acquavita, A., Pasquon, M., Skert, N., Tamberlich, F., & Mattassi, G. (2015a). Total gaseous mercury concentrations and lichens bioaccumulation in the Northern Adriatic coastal area (Gulf of Trieste, Italy). Rendiconti on Line della Società Geologica Italiana, 35(2), 420.Google Scholar
  3. Acquavita, A., Covelli, S., Esbrí, J.M., Petranich, E., Emili, A., & Barago, N. (2015b). Variability of gaseous elemental mercury concentrations in the northern Adriatic coastal area (Gulf of Trieste-Marano and Grado Lagoon). 22nd International Symposium on Environmental Biogeochemistry Piran- Slovenia, September 28-October 2, 2015.Google Scholar
  4. ATSDR/EPA National Mercury. (2012). Cleanup policy workgroup. Action levels for elemental mercury spills. http://www.atsdr.cdc.gov/emergency_response/Action_Levels_for_Elemental_Mercury_Spills_2012.pdf.
  5. Baldi, F., Gallo, M., Marchetto, D., Fani, R., Maida, I., Horvat, M., Fajon, V., Žižek, S., & Hines, M. (2012). Seasonal mercury transformation and surficial sediment detoxification by bacteria of Marano and Grado lagoons. Estuarine, Coastal and Shelf Science, 113, 105–115.CrossRefGoogle Scholar
  6. Bargagli, R., & Barghigiani, C. (1991). Lichen biomonitoring of mercury emission and deposition in mining, geothermal and volcanic areas of Italy. Environmental Monitoring and Assessment, 16, 265–275.CrossRefGoogle Scholar
  7. Bargagli, R., Iosco, F. P., & Leonzio, C. (1985). Monitoraggio di elementi in tracce mediante licheni epifiti. Inquinamento, 2, 33–37 (in Italian).Google Scholar
  8. Bargagli, R., Iosco, F. P., & D’Amato, M. L. (1987). Zonation of trace metal accumulation in three species of epiphytic lichens belonging to the genus Parmelia. Cryptogamie, Bryologie et Lichenology, 8, 331–337.Google Scholar
  9. Bargagli, R., Barghigiani, C., Siegel, B. Z., & Siegel, S. M. (1989). Accumulation of mercury and other metals by the lichen, Parmelia sulcata, at an Italian mine site and a volcanic area. Water, Air, & Soil Pollution, 45, 315–327.CrossRefGoogle Scholar
  10. Barghigiani, C., Bargagli, R., Siegel, B. Z., & Siegel, S. M. A. (1990). A comparative study of mercury distribution on the aeolian volcanoes, Vulcano and Stromboli. Water, Air, & Soil Pollution, 53, 179–188.CrossRefGoogle Scholar
  11. Bergamaschi, L., Rizzio, E., Giaveri, G., Loppi, S., & Gallorini, M. (2007). Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Environmental Pollution, 148, 468–476.CrossRefGoogle Scholar
  12. Biasiol, S. (2015). Utilizzo di moss bags per il monitoraggio della contaminazione da mercurio nel canale Banduzzi (Torviscosa). Thesis University of Udine, (Italia) 131 pp. (in Italian).Google Scholar
  13. Biester, H., Müller, G., & Schöler, H. F. (2002). Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. The Science of the Total Environment, 284, 191–203.CrossRefGoogle Scholar
  14. Brambati, A. (2001). Coastal sediments and biota as indicators of Hg contamination in the Marano and Grado lagoons. RMZ-Materials and Geoenvironment, 48, 165–171.Google Scholar
  15. Cabassi, J. (2015). Gaseous mercury (Hg(0)) in the former mining area of Abbadia San Salvatore (Mt. Amiata, Siena) and in quiescent and active volcanic areas: distribution in air and comparison with other atmospheric pollutants. Plinius, 41, 1–8.Google Scholar
  16. Canário, J., Caetano, M., Vale, C., & Cesário, R. (2007). Evidence for elevated production of methylmercury in salt marshes. Environmental Science and Technology, 41, 7376–7382.CrossRefGoogle Scholar
  17. Canário, J., Vale, C., Poissant, L., Nogueira, M., Pilote, M., & Branco, V. (2010). Mercury in sediments and vegetation in a moderately contaminated salt marsh (Tagus Estuary, Portugal). Journal of Environmental Sciences, 22, 1151–1157.CrossRefGoogle Scholar
  18. Carpi, A. (1997). Mercury from combustion sources: a review of the chemical species emitted and their transport in the atmosphere. Water, Air, & Soil Pollution, 98, 241–254.Google Scholar
  19. Clarkson, T. W. (1998). Human toxicology of mercury. Journal of Trace Elements in Experimental Medicine, 11, 303–317.CrossRefGoogle Scholar
  20. Covelli, S., Faganeli, J., Horvat, M., & Brambati, A. (2001). Mercury contamination of coastal sediments as the result of a long-term cinnabar mining activity (Gulf of Trieste, Northern Adriatic Sea). Applied Geochemistry, 16, 541–558.CrossRefGoogle Scholar
  21. Covelli, S., Piani, R., Acquavita, A., Predonzani, S., & Faganeli, J. (2007). Transport and dispersion of particulate Hg associated with a river plume in coastal Northern Adriatic environment. Marine Pollution Bulletin, 55, 436–450.CrossRefGoogle Scholar
  22. Crespo-López, M. E., Lima de Sa, A. L., Herculano, A. M., Burbano, R. R., & Martins do Nascimento, J. L. (2007). Methylmercury genotoxicity: a novel effect in human cell lines of the central nervous system. Environment International, 33, 141–146.CrossRefGoogle Scholar
  23. Crespo-López, M. E., Macêdo, G. L., Arrifano, G. P. F., Pinheiro, M. N., do Nascimento, J. L. M., & Herculano, A. M. (2011). Genotoxicity of mercury: contributing for the analysis of Amazonian populations. Environment International, 37, 136–141.CrossRefGoogle Scholar
  24. Cuny, D., Davranche, L., Thomas, P., Kempa, M., & Van Haluwyn, C. (2004). Spatial and temporal variations of trace element contents in Xanthoria parietina Thalli collected in a highly industrialized area in Northern France as an element for a future epidemiological study. Journal of Atmospheric Chemistry, 49, 391–401.CrossRefGoogle Scholar
  25. Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: sources, pathways, and effects. Environmental Science and Technology, 47, 4967–4983.CrossRefGoogle Scholar
  26. Esbrí, J. M., López-Berdonces, M. A., Fernández-Calderón, S., Higueras, P., & Díez, S. (2015). Atmospheric mercury pollution around a chlor-alkali plant in Flix (NE Spain): an integrated analysis. Environmental Science and Pollution Research, 22, 4842–4850.CrossRefGoogle Scholar
  27. Esbrí, J. M., Martínez-Coronado, A., & Higueras, P. L. (2016). Temporal variations in gaseous elemental mercury concentrations at a contaminated site: main factors affecting nocturnal maxima in daily cycles. Atmospheric Environment, 125, 8–14.CrossRefGoogle Scholar
  28. Fernández-Patier, R., & Ramos-Díaz, M. C. (2011). Informe del Ejercicio de lntercomparacion de Mercurio Gaseoso total en aire ambiente “IN SITU” (año 2011). Ined. Repport, Instituto de Salud Carlos III, Centro Nacional de Sanidad Ambiental, Area de Contaminacion Atmosferica. Ministerio de Economía y Competitividad, España (in Spanish).Google Scholar
  29. Fitzgerald, W. F., & Clarkson, T. W. (1991). Mercury and monomethylmercury—present and future concerns. Environmental Health Perspectives, 96, 159–166.CrossRefGoogle Scholar
  30. Garty, J. (2000). Environment and elemental content of lichens. In B. Markert & K. Friese (Eds.), Trace metals in the environment (pp. 245–276). Amsterdam: Elsevier Science Publishers.Google Scholar
  31. Giani, M., Rampazzo, F., Berto, D., Maggi, C., Mao, A., Horvat, M., Emili, A., & Covelli, S. (2012). Bioaccumulation of mercury in reared and wild Ruditapes philippinarum of a Mediterranean lagoon. Estuarine, Coastal and Shelf Science, 113, 116–125.CrossRefGoogle Scholar
  32. Gosar, M., Pirc, S., Sajn, R., Bidovec, M., Mashyanov, N. R., & Sholupov, S. (1997). Distribution of mercury in the atmosphere over Idrija, Slovenia. Environmental Geochemistry and Health, 19, 101–110.CrossRefGoogle Scholar
  33. Higueras, P., Oyarzun, R., Kotnik, J., Esbrí, J. M., Martínez-Coronado, A., Horvat, M., López-Berdonces, M. A., Llanos, W., Vaselli, O., Nisi, B., Mashyanov, N., Ryzov, V., Spiric, Z., Panichev, N., McCrindle, R., Feng, X., Fu, W., Lillo, J., Loredo, J., García, M. E., Alfonso, P., Villegas, K., Palacios, S., Oyarzún, J., Maturana, H., Contreras, F., Adams, M., Ribeiro-Guevara, S., Niecenski, L. F., Giammanco, S., & Huremović, J. (2014a). A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa, and China: separating fads from facts. Environmental Geochemistry and Health, 36, 713–734.CrossRefGoogle Scholar
  34. Higueras, P., Covelli, S., Emili, A., Esbrí, J. M., & Acquavita, A. (2014b). Total gaseous mercury concentrations in the atmosphere of the northern Adriatic coastal area (Trieste Gulf, NE Italy). Energy and Environment Knowledge Week Congress – E2KW 2014, Toledo (Spain) 30–31 October 2014, Book of abstracts.Google Scholar
  35. Higueras, P., Acquavita, A., Covelli, S., Esbrí, J. M., Petranich, E., Emili, A., & Barago, N. (2015). Variability of gaseous elemental mercury concentrations in the northern Adriatic coastal area (Gulf of Trieste-Marano and Grado Lagoon). 22nd International Symposium on Environmental Biogeochemistry Piran- Slovenia, September 28-October 2, 2015.Google Scholar
  36. Hong, Y., Chen, J., Deng, J., Tong, L., Xu, L., Niu, Z., Yin, L., Chen, Y., & Hong, Z. (2016). Pattern of atmospheric mercury speciation during episodes of elevated PM2.5 levels in a coastal city in the Yangtze River Delta, China. Environmental Pollution, 218, 259–268.CrossRefGoogle Scholar
  37. ISO/IEC Guide 43–1. (1997). Proficiency testing by interlaboratory comparisons part 1: development and operation of laboratory proficiency testing. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=27216. Accessed 18 March 15.
  38. Kocman, D. (2008). Mass balance of mercury in the Idrijca river catchment. Doctoral Dissertation, Jožef Štefan International Postgraduate School. Ljubljana-Slovenia, 152 pp.Google Scholar
  39. Kocman, D., Vreča, P., Fajon, V., & Horvat, M. (2011). Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia. Environmental Research, 111, 1–9.CrossRefGoogle Scholar
  40. Kotnik, J., Horvat, M., & Dizdarevič, T. (2005). Current and past mercury distribution in air over the Idrija Hg mine region, Slovenia. Atmospheric Environment, 39, 7570–7579.CrossRefGoogle Scholar
  41. Levin, M., Jacobs, J., & Polos, P. G. (1988). Acute mercury poisoning and mercurial pneumonitis from gold ore purification. Chest, 94, 554–556.CrossRefGoogle Scholar
  42. Li, P., Feng, X., & Qiu, G. (2010). Methylmercury exposure and health effects from rice and fish consumption: a review. International Journal of Environmental Research and Public Health, 7, 2666–2691.CrossRefGoogle Scholar
  43. Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X. B., Fitzgerald, W., Pirrone, N., Prestbo, E., & Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 36, 19–32.CrossRefGoogle Scholar
  44. Llanos, W., Kocman, D., Higueras, P., & Horvat, M. (2011). Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy. Journal of Environmental Monitoring, 13, 3460–3468.CrossRefGoogle Scholar
  45. Lodenius, M. (2013). Use of plants for biomonitoring of airborne mercury in contaminated areas. Environmental Research, 125, 113–123.CrossRefGoogle Scholar
  46. López Berdonces, M. A., Higueras, P. L., Fernández-Pascual, M., Borreguero, A. M., & Carmona, M. (2016). The role of native lichens in the biomonitoring of gaseous mercury at contaminated sites. Journal of Environmental Management. doi: 10.1016/j.jenvman.2016.04.047.Google Scholar
  47. Loppi, S., & Bargagli, R. (1996). Lichen biomonitoring of trace elements in a geothermal area (Central Italy). Water, Air, & Soil Pollution, 88, 177–187.Google Scholar
  48. Loppi, S., Nelli, L., Anora, S., & Bargagli, R. (1997a). Passive monitoring of trace elements by means of tree leaves, epiphytic lichens and bark substrate. Environmental Monitoring and Assessment, 45, 81–88.CrossRefGoogle Scholar
  49. Loppi, S., Cenni, E., Bussotti, F., & Ferretti, M. (1997b). Epiphytic lichens and tree leaves as biomonitors of trace elements released by geothermal power plants. Chemistry and Ecology, 14, 31–38.CrossRefGoogle Scholar
  50. Loppi, S., Giomarelli, B., & Bargagli, R. (1999). Lichens and mosses as biomonitors of trace elements in a geothermal area (Mt. Amiata, Central Italy). Cryptogamie Mycologie, 20, 119–126.CrossRefGoogle Scholar
  51. Loppi, S., Putortì, E., Pirintsos, A., & De Dominicis, V. (2000). Accumulation of heavy metals in epiphytic lichens near a municipal solid waste incinerator (Central Italy). Environmental Monitoring and Assessment, 61, 361–371.CrossRefGoogle Scholar
  52. Loppi, S., Paoli, L., & Gaggi, C. (2006). Diversity of epiphytic lichens and Hg contents of Xanthoria parietina thalli as monitors of geothermal air pollution in the Mt. Amiata area (Central Italy). Journal of Atmospheric Chemistry, 53, 93–105.CrossRefGoogle Scholar
  53. Mattassi, G., Daris, F., Nedoclan, G., Crevatin, E., Modonutti, G. B., & Lach, S. (1991). La qualità delle acque della Laguna di Marano. USL N°8 “Bassa Friulana”, 1–101 (in Italian).Google Scholar
  54. Nimis, P.L., & Bargagli, R. (1999). Linee-guida per l’utilizzo di licheni epifiti come bioaccumulatori di metalli in traccia. Atti del Workshop “Biomonitoraggio della qualità dell’aria sul territorio nazionale”. Roma, 26–27 novembre 1998. ANPA Serie Atti (in Italian).Google Scholar
  55. Nimis, P. L., Skert, N., & Castello, M. (1999). Biomonitoraggio di metalli in traccia tramite licheni in aree a rischio del Friuli-Venezia Giulia. Studia Geobotanica, 18, 3–49 (in Italian).Google Scholar
  56. Oyarzun, R., Higueras, P., Esbrí, J. M., & Pizarro, J. (2007). Mercury in air and plant specimens in herbaria: a pilot study at the MAF Herbarium in Madrid (Spain). Science of the Total Environment, 387, 346–352.CrossRefGoogle Scholar
  57. Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2001). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063.CrossRefGoogle Scholar
  58. Pacyna, J. M., Sundseth, K., Pacyna, E. G., Jozewicz, W., Munthe, J., Belhaj, M., & Aström, S. (2010). An assessment of costs and benefits associated with mercury emission reductions from major anthropogenic sources. Journal of the Air & Waste Management Association, 60, 302–315.CrossRefGoogle Scholar
  59. Piani, R., Covelli, S., & Biester, H. (2005). Mercury contamination in Marano Lagoon (Northern Adriatic sea, Italy): source identification by analyses of Hg phases. Applied Geochemistry, 20, 1546–1559.CrossRefGoogle Scholar
  60. Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., & Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10, 5951–5964.CrossRefGoogle Scholar
  61. Poissant, L. (2000). Total gaseous mercury in Quebec (Canada) in 1998. Science of the Total Environment, 259, 191–201.CrossRefGoogle Scholar
  62. RAFVG. (2013). Valutazione della volatilizzazione del mercurio in siti inquinati della Regione Friuli Venezia Giulia. Rapporto Tecnico Scientifico, pp. 47 (in Italian).Google Scholar
  63. Ramieri, E., Barbanti, A., Picone, M., Menchini, G., Bressan, E., & Dal Forno, E. (2011). Integrated plan for the sustainable management of the Lagoon of Marano and Grado. Littoral. doi: 10.1051/litt/201105008.Google Scholar
  64. Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury—an overview. Atmospheric Environment, 32, 809–822.CrossRefGoogle Scholar
  65. Schuster, E. (1991). The behavior of mercury in the soil with special emphasis on complexation and absorption processes—a review of the literature. Water, Air, & Soil Pollution, 56, 667–680.CrossRefGoogle Scholar
  66. Selin, N. E. (2009). Global biogeochemical cycling of mercury: a review. Annual Review of Environment and Resources, 34, 43–63.CrossRefGoogle Scholar
  67. Sholupov, S. E., & Ganeyev, A. A. (1995). Zeeman absorption spectrometry using high frequency modulated light polarization. Spectrochimica Acta B, 50, 1227–1238.CrossRefGoogle Scholar
  68. Sholupov, S., Pogarev, S., Ryzhov, V., Mashyanov, N., & Stroganov, A. (2004). Zeeman atomic absorption spectrometer RA-915 + for direct determination of mercury in air and complex matrix samples. Fuel Processing Technology, 85, 473–485.CrossRefGoogle Scholar
  69. Tassi, F., Cabassi, J., Calabrese, S., Bisi, N., Venturi, S., Capecchiacci, F., Giannini, L., & Vaselli, O. (2016). Diffuse soil gas emissions of gaseous elemental mercury (GEM) from hydrothermal-volcanic systems: an innovative approach by using the static closed-chamber method. Applied Geochemistry, 66, 234–241.CrossRefGoogle Scholar
  70. Tretiach, M., & Baruffo, L. (2001). Deposizione di metalli nella pedemontana pordenonese. Uno studio basato sui licheni bioaccumulatori. Pordenone: Provincia di Pordenone.Google Scholar
  71. Tretiach, M., & Pittao, E. (2008). Biomonitoraggio di metalli mediante licheni in cinque aree campione della Provincia di Pordenone. Stato attuale e confronto con i dati del 1999. Pordenone: Provincia di Pordenone.Google Scholar
  72. Tretiach, M., Carniel, F. C., Loppi, S., Carniel, A., Bortolussi, A., Mazzilis, D., & Del Bianco, C. (2011). Lichen transplants as a suitable tool to identify mercury pollution from waste incinerators: a case study from NE Italy. Environmental Monitoring and Assessment, 175, 589–600.CrossRefGoogle Scholar
  73. US OSHA. (2007). Health and safety (Hg). Occupational hazards. http://www.hgtech.com/HSE/HSE.htm
  74. Vannini, A., Nicolardi, V., Bargagli, R., & Loppi, S. (2014). Estimating atmospheric mercury concentrations with lichens. Environmental Science and Technology, 48, 8754–8759.CrossRefGoogle Scholar
  75. Vaselli, O., Rappuoli, D., Bianchi, F., Nisi, B., Higueras, P. L., Cabassi, J., & Tassi, F. (2015). Mercury pollution in the former mining area of Abbadia San Salvatore (Siena, Tuscany Region, Central Italy): actions, criticalities and perspectives for the remediation process. Rendiconti on Line della Società Geologica Italiana, 35(2), 434.Google Scholar
  76. Wängberg, I., Barregard, L., Sällsten, G., Haeger-Eugensson, M., Munthe, J., & Sommar, J. (2005). Emissions, dispersion and human exposure of mercury from a Swedish chlor-alkali plant. Atmospheric Environment, 39, 7451–7458.CrossRefGoogle Scholar
  77. WHO. (2000). Air quality guidelines for Europe. WHO Regional Publications European Series 91, World Health Organization Regional Office for Europe, Copenhagen, 288 pp.Google Scholar
  78. Xu, L., Chen, J., Yang, L., Yin, L., Yu, J., Qiu, T., & Hong, Y. (2014). Characteristics of total and methyl mercury in wet deposition in a coastal city, Xiamen, China. Atmospheric Environment, 99, 10–16.CrossRefGoogle Scholar
  79. Yang, Y., Zhang, C., Shi, X., Lin, T., & Wang, D. (2007). Effect of organic matter and pH on mercury release from soils. Journal of Environmental Sciences, 19, 1349–1354.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Alessandro Acquavita
    • 1
  • Stefano Biasiol
    • 1
  • Daniel Lizzi
    • 2
  • Giorgio Mattassi
    • 1
  • Mariangela Pasquon
    • 1
  • Nicola Skert
    • 1
  • Luca Marchiol
    • 2
  1. 1.ARPA FVGPalmanovaItaly
  2. 2.Dipartimento di Scienze AgroAlimentari, Ambientali e AnimaliUniversità di UdineUdineItaly

Personalised recommendations