Skip to main content

Advertisement

Log in

Laboratory Evaluation of Metal Elements Urease Inhibitor and DMPP Nitrification Inhibitor on Nitrogenous Gas Losses in Selected Rice Soils

Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Urea is considered as the most widely used nitrogen (N) fertilizer. Unfortunately, its application is associated with losses such as emissions of ammonia (NH3) and nitrous oxide (N2O) in a gas form. In addition to the economic loss, such N losses may threaten atmospheric quality. Application of both urease and nitrification inhibitors is advocated as an approach to mitigate these gaseous losses. Thus, laboratory studies were carried out to evaluate the effects of urease inhibitor-coated urea, nitrification inhibitor-coated urea, and other modified urea fertilizers on NH3 volatilization and N2O gas emissions in selected anaerobic rice soils. Copper (Cu) and Zinc (Zn) were selected as urease inhibitors and DMPP (3,4-dimethylpyrazole phosphate) as nitrification inhibitor. Nitrogen fertilizer treatments used were urea, Cu-coated urea (CuU), Zn-coated urea (ZnU), Cu + Zn-coated urea (CuZn), DMPP-coated urea (DMPPU), DMPP + Cu + Zn-coated urea (DMPPCuZn), OneBaja, sulfur-coated urea (SU), and dolomite-coated urea (DU). Results demonstrated that CuU, ZnU, DMPPCuZn, SU, and OneBaja were effective in reducing NH3 volatilization by 12.12–37.48 % compared to urea, while DMPPU had no effect on NH3 volatilization. Meanwhile, sulfur-coated urea (SU), CuU, ZnU, CuZn, OneBaja, DMPPU, and DMPPCuZn reduced N2O emission over urea by 14.86, 17.57, 21.62, 29.73, 29.73, 33.78, and 48.64 %, respectively. These results suggest that using Cu, Zn, or combinations of DMPP, Cu, and Zn is recommended as an alternative to mitigate both NH3 volatilization and N2O emission, in addition to providing positive impact to environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Abalos, D., Jeffery, S., Sanz-Cobena, A., Guardia, G., & Vallejo, A. (2014). Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture, Ecosystems & Environment, 189, 136–144.

    Article  CAS  Google Scholar 

  • Barneze, A. S., Minet, E. P., Cerri, C. C., & Misselbrook, T. (2015). The effect of nitrification inhibitors on nitrous oxide emissions from cattle urine depositions to grassland under summer conditions in the UK. Chemosphere, 119, 122–129.

    Article  CAS  Google Scholar 

  • Barth, G., Tucher, S. V., & Schmidhalter, U. (2001). Influence of soil parameters on the efficiency of the new nitrification inhibitor DMPP (ENTEC®). In Plant Nutrition (pp. 756–757). Netherlands: Springer.

    Google Scholar 

  • Bremner, J. M., Mulvaney, C. S., Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Nitrogen—total. In Methods of soil analysis. Part 2 (pp. 1149–1178). Madison, Wisconsin, USA: Am.Soc. Agron.

    Google Scholar 

  • Cameron, K. C., Di, H. J., & Moir, J. L. (2013). Nitrogen losses from the soil/plant system: a review. Annals of Applied Biology, 162(2), 145–173.

    Article  CAS  Google Scholar 

  • Cao, Y., Tian, Y., Yin, B., & Zhu, Z. (2013). Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crops Research, 147, 23–31.

    Article  Google Scholar 

  • Cui, Z., Zhang, F., Chen, X., Dou, Z., & Li, J. (2010). In-season nitrogen management strategy for winter wheat: maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crops Res, 116(1–2), 140–146.

    Article  Google Scholar 

  • Datta, A., & Adhya, T. K. (2014). Effects of organic nitrification inhibitors on methane and nitrous oxide emission from tropical rice paddy. Atmospheric Environment, 92, 533–545.

    Article  CAS  Google Scholar 

  • Dimin, M. F., Sian Meng, S., Azizah, S., & Hashim, M. M. (2014). Urea impregnated biochar to minimize nutrients loss in paddy soils. International Journal of Automotive and Mechanical Engineering (IJAME), 10, 2016–2024.

    Article  Google Scholar 

  • Dobermann, A., & Fairhurst, T. H. (2000). Nutrient disorders and nutrient management. Singapore: Potash and Phosphate Institute, Potash and Phosphate Institute of Canada and International Rice Research Institute.

    Google Scholar 

  • EPA: United States Environmental Protection. (2011). Reactive Nitrogen in the United States: Analysis of Inputs, Flows, Consequences, and Management Options In: Doering III, O.C., Galloway, J.N., Theis, T.L., Swackhamer, D. (Eds.), A Report of the EPA Science Advisory Board. Retrieved from www.epa.gov/sab (accessed on 12.11.11)

  • Fenn, L. B., & Kissel, D. E. (1973). Ammonia volatilization from surface applications of ammonium compounds on calcareous soils: I. General theory. Soil Science Society of America Journal, 37(6), 855–859.

    Article  CAS  Google Scholar 

  • Firestone, M. K., Firestone, R. B., & Tiedje, J. M. (1980). Nitrous oxide from soil denitrification: factors controlling its biological production. Science, 208, 749–751.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., & Cosby, B. J. (2003). The nitrogen cascade. Bioscience, 53(4), 341–356.

    Article  Google Scholar 

  • Gandahi, R., Khanif, M. Y., Oad, F. C., Hanafi, M. M., & Othman, R. (2015). Estimation of greenhouse gases emission from a rice field of Kelantan, Malaysia by using DNDC model. Pakistan Journal of Agricultural Sciences, 52(1), 247–257.

    Google Scholar 

  • Gioacchini, P., Nastri, A., Marzadori, C., Giovannini, C., Antisari, L. V., & Gessa, C. (2002). Influence of urease and nitrification inhibitors on N losses from soils fertilized with urea. Biology and Fertility of Soils, 36(2), 129–135.

    Article  CAS  Google Scholar 

  • IAEA-International Atomic Energy Agency. (1992). Manual on measurement of methane and nitrous oxide emission from agricultural (IAEA-TECDOC-674, p. 91). Vienna: IAEA.

    Google Scholar 

  • Ibrahim, K. R. M., Babadi, F. E., & Yunus, R. (2014). Comparative performance of different urea coating materials for slow release. Particuology, 17, 165–172.

    Article  Google Scholar 

  • IPCC. (2007). Working Group III Report “Mitigation of Climate Change”: Chapter 1. Introduction. Retrieved from http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-chapter1.pdf (verified on October 3).

  • Junejo, N., Khanif, M. Y., Dharejo, K. A., Abdul-Hamid, H., & Abdu, A. (2012). Evaluation of coated urea for ammonia volatilization loss, nitrogen mineralization and microsite pH in selected soil series. African Journal of Biotechnology, 11(2), 366–378.

    CAS  Google Scholar 

  • Keeney, D. R., & Nelson, D. W. (1982). Nitrogen-inorganic forms. Methods of soil analysis, Part 2. In P. Al (Ed.), Chemical and microbiological properties (Agronomy Monograph 9, pp. 643–698). Madison: ASA, SSSA.

    Google Scholar 

  • Khanif, Y. M. (1992). Ammonia volatilization from Malaysian soils following application of Urea. Pertanika., 15(2), 115–120.

    CAS  Google Scholar 

  • Knowles, R. (1982). Denitrification. Microbiological Reviews, 46(1), 43–70.

    CAS  Google Scholar 

  • Kroeze, C., Mosier, A., & Bouwman, L. (1999). Closing the global N2O budget: a retrospective analysis 1500–1994. Global Biogeochemical Cycles, 13(1), 1–8.

    Article  CAS  Google Scholar 

  • Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3), 436–442.

    Article  CAS  Google Scholar 

  • Lan, T., Han, Y., Roelcke, M., Nieder, R., & Car, Z. (2014). Sources of nitrous and nitric oxides in paddy soils: nitrification and denitrification. Journal of Environmental Sciences, 26(3), 581–592.

    Article  CAS  Google Scholar 

  • Li, H., Liang, X., Chen, Y., Tian, G., & Zhang, Z. (2008). Ammonia volatilization from urea in rice fields with zero-drainage water management. Agricultural Water Management, 95(8), 887–894.

    Article  Google Scholar 

  • Li, H., Chen, Y., Liang, X., Lian, Y., & Li, W. (2009). Mineral-nitrogen leaching and ammonia volatilization from a rice–rapeseed system as affected by 3, 4-dimethylpyrazole phosphate. Journal of Environmental Quality, 38(5), 2131–2137.

    Article  CAS  Google Scholar 

  • Liu, X. J., Mosier, A. R., Halvorson, A. D., & Zhang, F. S. (2005). Tillage and nitrogen application effects on nitrous and nitric oxide emissions from irrigated corn fields. Plant and Soil, 276(1-2), 235–249.

    Article  CAS  Google Scholar 

  • Liu, C., Wang, K., & Zheng, X. (2013). Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat–maize cropping system. Biogeosciences, 10(4), 2427–2437.

    Article  CAS  Google Scholar 

  • Macadam, X. M. B., del Prado, A., Merino, P., Estavillo, J. M., Pinto, M., & González-Murua, C. (2003). Dicyandiamide and 3, 4-dimethyl pyrazole phosphate decrease N 2 O emissions from grassland but dicyandiamide produces deleterious effects in clover. Journal of plant physiology, 160(12), 1517–1523.

    Article  CAS  Google Scholar 

  • Martikainen, P. J. (1985). Nitrous oxide emission associated with autotrophic ammonium oxidation in acid coniferous forest soil. Applied and Environmental Microbiology, 50(6), 1519–1525.

    CAS  Google Scholar 

  • Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277(5325), 504–509.

    Article  CAS  Google Scholar 

  • Migliorati, M. D. A., Scheer, C., Grace, P. R., Rowlings, D. W., Bell, M., & McGree, J. (2014). Influence of different nitrogen rates and DMPP nitrification inhibitor on annual N2O emissions from a subtropical wheat–maize cropping system. Agriculture, Ecosystems & Environment, 186, 33–43.

    Article  Google Scholar 

  • Mikkelsen, D. S., Gaman, R. J., & Dennis, E. R. (1995). Nitrogen fertilization practices of lowland rice culture. In E. B. Peter (Ed.), Nitrogen fertilization in the environment (pp. 171–223). Boca Raton, USA: CRC Press.

    Google Scholar 

  • Nur Syamimi A Rahman. (2015). Effect of coated urea to the growth and yield of rice MR219. Master Thesis, Universiti Putra Malaysia.

  • Prasad, R., & Power, J. F. (1997). Soil fertility management for sustainable agriculture. New York: CRC Press.

    Google Scholar 

  • Rao, R. R., Peterson, A. W., Ceccarelli, J., Putnam, A. J., & Stegemann, J. P. (2012). Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis, 15(2), 253–264.

    Article  CAS  Google Scholar 

  • Rochette, P., Angers, D. A., Chantigny, M. H., MacDonald, J. D., Gasser, M. O., & Bertrand, N. (2009). Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands. Nutrient Cycling in Agroecosystems, 84(1), 71–80.

    Article  Google Scholar 

  • Schollenberger, C. J., & Simon, R. H. (1945). Determination of exchange capacity and exchangeable bases in soil-ammonium acetate method. Soil Science, 59(1), 13–24.

    Article  CAS  Google Scholar 

  • Shaaban, A., Se, S. M., Dimin, M., Juoi, J. M., Husin, M. H. M., & Mitan, N. M. M. (2014). Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 107, 31–39.

    Article  CAS  Google Scholar 

  • Shang, Q., Gao, C., Yang, X., Wu, P., Ling, N., Shen, Q., & Guo, S. (2014). Ammonia volatilization in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Biology and Fertility of Soils, 50(5), 715–725.

    Article  CAS  Google Scholar 

  • Singh, J. P., Kumaar, V., & Dahiya, D. J. (1991). Urease activity in some benchnmark soils of Haryana and its relationship with various soil properties. Journal of the Indian Society of Soil Science, 39(2), 281–285.

    CAS  Google Scholar 

  • Singh, J., Kunhikrishnan, A., Bolan, N. S., & Saggar, S. (2013). Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Science of the Total Environment, 465, 56–63.

    Article  CAS  Google Scholar 

  • Soares, J. R., Cantarella, H., & de Campos Menegale, M. L. (2012). Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry, 52, 82–89.

    Article  CAS  Google Scholar 

  • Speir, T. W., Lee, R., Elizabeth, A. P., & Cairns, A. (1980). A comparison of sulphatase, urease and protease activities in planted and in fallow soils. Soil Biology and Biochemistry, 12(3), 281–291.

    Article  CAS  Google Scholar 

  • Steiner, C., Das, K. C., Melear, N., & Lakly, D. (2010). Reducing nitrogen loss during poultry litter composting using biochar. Journal of environmental quality, 39(4), 1236–1242.

    Article  CAS  Google Scholar 

  • Sun, H., Zhang, H., Powlson, D., Min, J., & Shi, W. (2015). Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Field Crops Research, 173, 1–7.

    Article  Google Scholar 

  • Suter, H., Chen, D., Li, H., Edis, R., & Walker, C. (2010). In 19 th World Congress of Soil Science. Soil: Solutions for a Changing World. Published on DVD. Reducing N2O emissions from nitrogen fertilizers with the nitrification inhibitor DMPP.

  • Sutton, M.A., Bleeker, A., Howard, C.M., Bekunda, M., Grizzetti, B., de Vries, W., van Grinsven, H.J.M., Abrol, Y.P., Adhya, T.K., Billen, G., Davidson, E.A., Datta, A., Diaz, R., Erisman, J.W., Liu, X.J., Oenema, O., Palm, C., Raghuram, N., Reis, S., Scholz, R.W., Sims, T., Westhoek, H. & Zhang, F.S. (2013). Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative.

  • Tabatabai, M. A. (1977). Effects of trace elements on urease activity in soils. Soil Biology and Biochemistry, 9(1), 9–13.

    Article  CAS  Google Scholar 

  • Trenkel, M. E. (2010). Slow- and controlled-release and stabilized fertilizer: an option for enhancing nutrient efficiency in agriculture. Paris: International Fertilizer Industry Association.

    Google Scholar 

  • Weiske, A., Benckiser, G., & Ottow, J. C. (2001). Effect of the new nitrification inhibitor DMPP in comparison to DCD on nitrous oxide (N2O) emissions and methane (CH4) oxidation during 3 years of repeated applications in field experiments. Nutrient Cycling in Agroecosystems, 60(1-3), 57–64.

    Article  CAS  Google Scholar 

  • Xu, L., Chen, H., Xu, J., Yang, J., Li, X., Liu, M., Jiao, J., Hu, F., & Li, H. (2014). Nitrogen transformation and plant growth in response to different urea-application methods and the addition of DMPP. Journal Plant Nutrition Soil Science, 177, 271–277.

    Article  CAS  Google Scholar 

  • Xue, Z. W., Gang, S., He, P., Liang, G.-q., Wang, X.-b., Guang-rong, L., & Wei, Z. (2013). Effects of urease and nitrification inhibitors on ammonia volatilization from paddy fields. Journal of Plant Nutrition and Fertilizer, 19(6), 1411–1419.

    Google Scholar 

  • Yang, X., Liu, J., McGrouther, K., Huang, H., Lu, K., Guo, X., & Wang, H. (2015). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23(2), 974–984.

    Article  Google Scholar 

  • You, Z. L., Ni, L. L., Shi, D. H., & Bai, S. (2010). Synthesis, structures, and urease inhibitory activities of three copper (II) and zinc (II) complexes with 2-{[2-(2-hydroxyethylamino) ethylimino] methyl}-4-nitrophenol. European Journal of Medicinal Chemistry, 45(7), 3196–3199.

    Article  CAS  Google Scholar 

  • Zaman, M., & Blennerhassett, J. D. (2010). Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system. Agriculture, Ecosystems & Environment, 136(3), 236–246.

    Article  CAS  Google Scholar 

  • Zaman, M., Saggar, S., Blennerhassett, J. D., & Singh, J. (2009). Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biology and Biochemistry, 41(6), 1270–1280.

    Article  CAS  Google Scholar 

  • Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., & Crowley, D. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment, 139(4), 469–475.

    Article  CAS  Google Scholar 

  • Zhang, M., Fan, C. H., Li, Q. L., Li, B., Zhu, Y. Y., & Xiong, Z. Q. (2015). A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agriculture, Ecosystems & Environment, 201, 43–50.

    Article  CAS  Google Scholar 

  • Zerulla, W., Barth, T., Dressel, J., Erhardt, K., von Locquenghien, K. H., Pasda, G., & Wissemeier, A. (2001). 3, 4-Dimethylpyrazole phosphate (DMPP)–a new nitrification inhibitor for agriculture and horticulture. Biology and Fertility of Soils, 34(2), 79–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Long-Term Research Grant Scheme (LRGS) under project “OneBAJA the Next Generation Green and Economical Urea” for providing the research grant as well as Universiti Putra Malaysia for the facilities and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosmarina bt Ahmad Khariri.

Ethics declarations

Financial Support

Financial support came from the Ministry of Education Malaysia (grant no. 5525200).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khariri, R.b.A., Yusop, M.K., Musa, M.H. et al. Laboratory Evaluation of Metal Elements Urease Inhibitor and DMPP Nitrification Inhibitor on Nitrogenous Gas Losses in Selected Rice Soils. Water Air Soil Pollut 227, 232 (2016). https://doi.org/10.1007/s11270-016-2927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2927-7

Keywords

Navigation