Assessing the Ecotoxicity of Gold Mine Tailings Utilizing Earthworm and Microbial Assays

  • Charné van Coller-Myburgh
  • Leon van Rensburg
  • Mark MaboetaEmail author


Problems associated with mining are the disposal of wastes on tailing disposal facilities (TDFs). The aim of this study was to determine the ecotoxicity of gold mine tailings by using earthworm bioassays, earthworm biomarkers and enzymatic analyses. End points included changes in biomass, reproduction, lysosomal membrane stability, tissue metal concentrations, and selected enzymatic activities. Results indicated high concentrations of Ni in the material as well as bioaccumulation of lead and arsenic in the earthworm body tissue after exposure. Enzymatic activity was higher in revegetated tailings than in unrehabilitated tailings. It was concluded that TDF and surrounding areas have an acidic pH which affects earthworms and metal bioavailability. Soil enzymatic activities were a sensitive indicator of metal pollution in mining areas. Growth, reproduction and lysosomal membrane stability of earthworms have also been shown to be sensitive end points to assess the ecotoxic effects of gold TDF.


Bioassays Biomarkers Earthworms Gold mining 



This work is based upon the research supported by the National Research Foundation of South Africa. We thank Pieter Hermanus Myburgh for his assistance.

Compliance with Ethical Standards

We hereby declare that the research has no possible conflicts of interest and that the animals (earthworms) used in this study were done according to ethical compliant standards.


  1. Akcil, A., & Koldas, S. (2006). Acid mine drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14, 1139–1145.CrossRefGoogle Scholar
  2. Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. New York: Academic Press.Google Scholar
  3. Antunes, S. C., Pereira, R., Marques, S. M., Castro, B. B., & Gonçalves, F. (2011). Impaired microbial activity caused by metal pollution: a field study in a deactivated uranium mining area. The Science of the Total Environment, 410, 87–95.CrossRefGoogle Scholar
  4. Aon, M., Sarena, D. E., Burgos, J., & Cortassa, S. (2001). (Micro) biological, chemical and physical properties of soils subjected to conventional or no-till management: an assessment of their quality status. Soil and Tillage Research, 60, 173–186.CrossRefGoogle Scholar
  5. Barcan, V., & Kovnatsky, E. (1998). Soil surface geochemical anomaly around the copper-nickel metallurgical smelter. Water, Air, and Soil Pollution, 103, 197–218.CrossRefGoogle Scholar
  6. Bengtsson, G., Gunnarsson, T., & Rundgren, S. (1986). Effects of metal pollution on the earthworm Dendrobaena rubida (Sav.) in acidified soils. Water, Air, and Soil Pollution, 28, 361–383.Google Scholar
  7. Boudou, A., Maury-Brachet, R., Coquery, M., Durrieu, G., & Cossa, D. (2005). Synergic effect of gold mining and damming on mercury contamination in fish. Environmental Science & Technology, 39, 2448–2454.CrossRefGoogle Scholar
  8. Chakraborti, D., Rahman, M. M., Murrill, M., Das, R., Patil, S., Sarkar, A., Yendigeri, S., Ahmed, R., & Das, K. K. (2013). Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. Journal of Hazardous Materials, 262, 1048–1055.CrossRefGoogle Scholar
  9. Chaperon, S., & Sauve, S. (2007). Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biology and Biochemistry, 39, 2329–2338.CrossRefGoogle Scholar
  10. Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K., & Niklińska, M. (2013). Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology, 64, 7–14.CrossRefGoogle Scholar
  11. Ciarkowska, K., Sołek-Podwika, K., & Wieczorek, J. (2014). Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. Journal of Environmental Management, 132, 250–256.CrossRefGoogle Scholar
  12. Cortes-Maramba, N., Reyes, J. P., Francisco-Rivera, A. T., Akagi, H., Sunio, R., & Panganiban, L. C. (2006). Health and environmental assessment of mercury exposure in a gold mining community in Western Mindanao, Philippines. Journal of Environmental Management, 81, 126–134.CrossRefGoogle Scholar
  13. Cortet, J., Vauflery, A. G.-D., Poinsot-Balaguer, N., Gomot, L., Texier, C., & Cluzeau, D. (1999). The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology, 35, 115–134.CrossRefGoogle Scholar
  14. Criquet, S., Ferre, E., & Farnet, A. (2004). Annual dynamics of phosphatase activities in an evergreen oak litter: influence of biotic and abiotic factors. Soil Biology and Biochemistry, 36, 1111–1118.CrossRefGoogle Scholar
  15. Curry, J. P., Doherty, P., Purvis, G., & Schmidt, O. (2008). Relationships between earthworm populations and management intensity in cattle-grazed pastures in Ireland. Applied Soil Ecology, 39, 58–64.CrossRefGoogle Scholar
  16. Davis, R. (1981). Cyanide detoxication in the domestic fowl. In: Vennesland, B., Conn, E. E., Knowles, C. J., Westley, J. & Wissing, F (eds) Cyanide in biology. Academic Press, New YorkGoogle Scholar
  17. Durrieu, G., Maury-Brachet, R., & Boudou, A. (2005). Goldmining and mercury contamination of the piscivorous fish Hoplias aimara in French Guiana (Amazon basin). Ecotoxicology and Environmental Safety, 60, 315–323.CrossRefGoogle Scholar
  18. Edwards, C. A.,. & Bohlen, P. J. (1996). Biology and ecology of earthworms. New York: Springer.Google Scholar
  19. Eisler, R. (2003). Health risks of gold miners: a synoptic review. Environmental Geochemistry Health, 25, 325–345.CrossRefGoogle Scholar
  20. Equeenuddin, S. M., Tripathy, S., Sahoo, P., & Panigrahi, M. (2013). Metal behavior in sediment associated with acid mine drainage stream: role of pH. Journal of Geochemical Exploration, 124, 230–237.CrossRefGoogle Scholar
  21. Ferreira da Silva, E., Zhang, C., Serrano Pinto, L. s., Patinha, C., & Reis, P. (2004). Hazard assessment on arsenic and lead in soils of Castromil gold mining area, Portugal. Applied Geochemistry, 19, 887–898.CrossRefGoogle Scholar
  22. Finkenbein, P., Kretschmer, K., Kuka, K., Klotz, S., & Heilmeier, H. (2013). Soil enzyme activities as bioindicators for substrate quality in revegetation of a subtropical coal mining dump. Soil Biology and Biochemistry, 56, 87–89.CrossRefGoogle Scholar
  23. Fourie, A. (2009). Preventing catastrophic failures and mitigating environmental impacts of tailings storage facilities. Procedia Earth and Planetary Science, 1, 1067–1071.CrossRefGoogle Scholar
  24. Hankard, P. K., Svendsen, C., Wright, J., Wienberg, C., Fishwick, S. K., Spurgeon, D. J., & Weeks, J. M. (2004). Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. The Science of the Total Environment, 330, 9–20.CrossRefGoogle Scholar
  25. Harreus, D., Köhler, H.-R., & Weeks, J. (1997). Combined non-invasive cell isolation and neutral-red retention assay for measuring the effects of copper on the lumbricid Aporrectodea rosea (Savigny). Bulletin of Environmental Contamination and Toxicology, 59, 44–49.CrossRefGoogle Scholar
  26. Herselman, J. E., Steyn, C. E., & Fey, M. V. (2005). Baseline concentration of Cd, Co, Cr, Cu, Pb, Ni and Zn in surface soils of South Africa. South African Journal of Science, 101, 509–512.Google Scholar
  27. Hilson, G., & Murck, B. (2001). Progress toward pollution prevention and waste minimization in the North American gold mining industry. Journal of Cleaner Production, 9, 405–415.CrossRefGoogle Scholar
  28. American Society for Testing and Materials. (2004). Annual book of ASTM standards. Pennsylvania: American Society for Testing and Materials.Google Scholar
  29. Jubileus, M. T., Theron, P. D., van Rensburg, L., & Maboeta, M. S. (2013). Utilizing Eisenia andrei to assess the ecotoxicity of platinum mine tailings disposal facilities. Ecotoxicology, 22, 331–338.CrossRefGoogle Scholar
  30. Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6, 68–72.CrossRefGoogle Scholar
  31. Katz, S., & Jenniss, S. (1983). Regulatory compliance monitoring by atomic absorption spectroscopy. Florida: Verlag Chemistry International. 278 pp.Google Scholar
  32. Khalil, M. A., Abdel-Lateif, H. M., Bayoumi, B. M., & van Straalen, N. M. (1996). Analysis of separate and combined effects of heavy metals on the growth of Aporrectodea caliginosa (Oligochaeta; Annelida), using the toxic unit approach. Applied Soil Ecology, 4, 213–219.CrossRefGoogle Scholar
  33. La Brooy, S., Linge, H., & Walker, G. (1994). Review of gold extraction from ores. Minerals Engineering, 7, 1213–1241.CrossRefGoogle Scholar
  34. Lee, S.-H., Kim, E.-Y., Hyun, S., & Kim, J.-G. (2009). Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions. Journal of Hazardous Materials, 170, 382–388.CrossRefGoogle Scholar
  35. Li, Q., Lee Allen, H., & Wollum, A. G., II. (2004). Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control. Soil Biology and Biochemistry, 36, 571–579.CrossRefGoogle Scholar
  36. Maboeta, M., Rensburg, L. v., & Rensburg, P. J. v. (2008). Earthworm (Eisenia fetida) bioassay of platinum mine tailings. Applied Ecology and Environmental Research, 6, 13–19.Google Scholar
  37. Maboeta, M., Van Wyk, S., Van Rensburg, L., & van Rensburg, P. J. (2006a). The effect of platinum mining on surrounding soils and vegetation: a preliminary assessment (pp. 6–8). Lanzarote: IASTED International Conference on Advanced Technology in the Environmental Field.Google Scholar
  38. Maboeta, M. S., Claassens, S., Van Rensburg, L., & Van Rensburg, P. J. J. (2006b). The effects of platinum mining on the environment from a soil microbial perspective. Water, Air, and Soil Pollution, 175, 149–161.CrossRefGoogle Scholar
  39. Malecki, M. R., Neuhauser, E. F. & Loehr, R. C. (1982). Effect of metals on the growth and reproduction of Eisenia foetida (Oligochaeta, Lumbricidae). Pedobiologia, 24, 129–137Google Scholar
  40. Marabottini, R., Stazi, S., Papp, R., Grego, S., & Moscatelli, M. (2013). Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Ecotoxicology and Environmental Safety, 96, 147–153.CrossRefGoogle Scholar
  41. MBendi Information Services (Pty) Ltd (2014). Mining in South Africa-overview. Cape Town, South Africa: MBendi Information Services.Google Scholar
  42. Ministry of Housing Spatial planning and Environment (VROM) (2000). Annexes A–D: circular on target values and intervention values for soil remediation. South Africa: Ministry of HousingGoogle Scholar
  43. Moore, M. N. (1980). Cytochemical determination of cellular responses to environmental stressors in marine organisms. Rap Et Proces – Ver des Réun Cons Int pour I’Explor de la Mer, 170, 7–15.Google Scholar
  44. Natal-da-Luz, T., Ojeda, G., Pratas, J., Van Gestel, C. A., & Sousa, J. P. (2011). Toxicity to Eisenia andrei and Folsomia candida of a metal mixture applied to soil directly or via an organic matrix. Ecotoxicology and Environmental Safety, 74, 1715–1720.CrossRefGoogle Scholar
  45. Neuhauser, E., Malecki, M., & Loehr, R. (1984). Growth and reproduction of the earthworm Eisenia fetida after exposure to sublethal concentrations of metals. Pedobiologia, 27, 89–97.Google Scholar
  46. Ning, L., Liyuan, Y., Jirui, D., & Xugui, P. (2011). Heavy metal pollution in surface water of Linglong gold mining area, China. Procedia Environmental Sciences, 10, 914–917.CrossRefGoogle Scholar
  47. Ohno, M. (2001). Sensitivity of a Japanese earthworm (Allolobophora japonica) to soil acidity. In: Acid rain 2000. the Netherlands: Springer, pp. 1019-1024.Google Scholar
  48. Otomo, P. V., Wahl, J., & Maboeta, M. S. (2013). The enchytraeid reproduction test (ERT): a potentially quick and affordable tool for the assessment of metal contaminated soils in emerging economies. Bulletin of Environmental Contamination and Toxicology, 91, 545–548.CrossRefGoogle Scholar
  49. Papa, S., Bartoli, G., Pellegrino, A., & Fioretto, A. (2010). Microbial activities and trace element contents in an urban soil. Environmental Monitoring and Assessment, 165, 193–203.CrossRefGoogle Scholar
  50. Pereira, R., Sousa, J., Ribeiro, R., & Gonçalves, F. (2006). Microbial indicators in mine soils (S. Domingos Mine, Portugal). Soil & Sediment Contamination, 15, 147–167.CrossRefGoogle Scholar
  51. Pfeiffer, W., Lacerda, L., Salomons, W., & Malm, O. (1993). Environmental fate of mercury from gold mining in the Brazilian Amazon. Environmental Reviews, 1, 26–37.CrossRefGoogle Scholar
  52. Qasim, B., Motelica-Heino, M., Joussein, E., Soubrand, M. & Gauthier, A. (2015). Potentially toxic element phytoavailability assessment in Technosols from former smelting and mining areas, Environmental Science Pollution Research, 22, 5961–5974Google Scholar
  53. Qiu, H., Gu, H.-H., He, E.-K., Wang, S.-Z., & Qiu, R.-L. (2012). Attenuation of metal bioavailability in acidic multi-metal contaminated soil treated with fly ash and steel slag. Pedosphere, 22, 544–553.CrossRefGoogle Scholar
  54. Reece, R. (1997). Cyanide toxicity to birds. Short course notes on management of cyanide mining.. Perth: ACMRR.Google Scholar
  55. Rocco, A., Scott-Fordsmand, J. J., Maisto, G., Manzo, S., Salluzzo, A., & Jensen, J. (2011). Suitability of lysosomal membrane stability in Eisenia fetida as biomarker of soil copper contamination. Ecotoxicology and Environmental Safety, 74, 984–988.CrossRefGoogle Scholar
  56. Rossouw, A., Annegarn, H., Weiersbye, I., & Furniss, D. (2010). Evaluating the functional status of a rehabilitated gold tailings storage facility—a case study in the Witwatersrand. South African Journal of Botany, 76, 402.CrossRefGoogle Scholar
  57. Schimann, H., Petit-Jean, C., Guitet, S., Reis, T., Domenach, A. M., & Roggy, J.-C. (2012). Microbial bioindicators of soil functioning after disturbance: the case of gold mining in tropical rainforests of French Guiana. Ecological Indicators, 20, 34–41.CrossRefGoogle Scholar
  58. Scott-Fordsmand, J. J., Weeks, J. M., & Hopkin, S. P. (1998). Toxicity of nickel to the earthworm and the applicability of the neutral red retention assay. Ecotoxicology, 7, 291–295.CrossRefGoogle Scholar
  59. Sinha, R. K. (2010). Vermiculture technology: reviving the dreams of Sir Charles Darwin for scientific use of earthworms in sustainable development programs. Technology and Investment, 01, 155–172.CrossRefGoogle Scholar
  60. South Africa, S. (2014). National norms and standards for the remediation of contaminated land and soil quality in the Republic of South Africa, 37603. Pretoria: Government Gazette.Google Scholar
  61. Spurgeon, D., & Hopkin, S. (1996). Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedobiologia, 40, 80–96.Google Scholar
  62. Svendsen, C., Spurgeon, D. J., Hankard, P. K., & Weeks, J. M. (2004). A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker? Ecotoxicology and Environmental Safety, 57, 20–29.CrossRefGoogle Scholar
  63. Swartjes, F., Rutgers, M., Lijzen, J., Janssen, P., Otte, P., Wintersen, A., Brand, E., & Posthuma, L. (2012). State of the art of contaminated site management in the Netherlands: policy framework and risk assessment tools. The Science of the Total Environment, 427, 1–10.CrossRefGoogle Scholar
  64. Van Coller-Myburgh, C., Van Rensburg, L., & Maboeta, M. (2014). Utilizing earthworm and microbial assays to assess the ecotoxicity of chromium mine wastes. Applied Soil Ecology, 83, 258–265.CrossRefGoogle Scholar
  65. Van Gestel, C., & Van Straalen, N. (1994). Ecotoxicological test systems for terrestrial invertebrates. Boca Raton, FL: CRC Lewis Publishers.Google Scholar
  66. Van Gestel, C. A., Koolhaas, J. E., Hamers, T., Van Hoppe, M., Van Roovert, M., Korsman, C., & Reinecke, S. A. (2009). Effects of metal pollution on earthworm communities in a contaminated floodplain area: linking biomarker, community and functional responses. Environmental Pollution, 157, 895–903.CrossRefGoogle Scholar
  67. Van Straalen, N., & Van Gestel, C. (1994). Soil invertebrates and micro‐organisms. Oxford: Blackwell Scientific Publications. 416 pp.Google Scholar
  68. Vernile, P., Fornelli, F., Bari, G., Spagnuolo, M., Minervini, F., de Lillo, E., & Ruggiero, P. (2007). Bioavailability and toxicity of pentachlorophenol in contaminated soil evaluated on coelomocytes of Eisenia andrei (Annelida: Lumbricidae). Toxicology in vitro, 21, 302–307.CrossRefGoogle Scholar
  69. Von Mersi, W., & Schinner, F. (1991). An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of Soils, 11, 216–220.CrossRefGoogle Scholar
  70. Wahl, J. J., Theron, P. D., & Maboeta, M. S. (2012). Soil mesofauna as bioindicators to assess environmental disturbance at a platinum mine in South Africa. Ecotoxicology and Environmental Safety, 86, 250–260.CrossRefGoogle Scholar
  71. Wong, H. K. T., Gauthier, A., & Nriagu, J. O. (1999). Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. The Science of the Total Environment, 228, 35–47.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Charné van Coller-Myburgh
    • 1
  • Leon van Rensburg
    • 1
  • Mark Maboeta
    • 1
    Email author
  1. 1.Unit for Environmental Sciences and ManagementNorth-West University (Potchefstroom Campus)PotchefstroomSouth Africa

Personalised recommendations