Skip to main content

Advertisement

Log in

Livestock Wastewater Treatment in Batch and Continuous Photocatalytic Systems: Performance and Economic Analyses

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The feasibility of batch and continuous (60, 80, and 100 mL/min) mode photocatalysis systems in real-time livestock wastewater treatment was investigated. The photocatalytic experiments were conducted with two types of photocatalysts namely slurry titanium-dioxide (UV-TiO2) and granular activated carbon supported TiO2 (GAC-TiO2). The performance of the systems was compared using economic analysis based on cost and time required to attain maximum efficiency. The photocatalytic reactors operated with GAC-TiO2 was highly effective under both batch (total volatile solids (TVS) removal of 100 % within 6 min and a total operational cost of 0.68 USD per kg of TVS removal) and continuous (at 60 mL/min) (TVS removal of 63 % at a hydraulic retention time (HRT) of 240 min and a total operational cost of 62.16 USD per kg of TVS removal) mode experiments. The economic analyses indicated that cost reduction was a function of optimum time taken for maximum removal efficiency. Subsequently, the experiments were repeated with ultraviolet light (UV) alone, UV-GAC, and GAC alone to quantify effects of adsorption and photolysis. The results confirmed that the effect of GAC in the treatment/degradation of livestock wastewater by adsorption was negligible. However, the presence of GAC in UV systems propelled the rate of biochemical oxygen demand (BOD) and TVS removals. The entire observations reveal that the degradation was mainly by two reaction mechanisms: firstly, adsorption on the GAC surface and secondly by photocatalytic degradation on the GAC-TiO2 surface. Therefore, GAC-TiO2 photocatalysis could be cost-effectively applied for high-rate treatment of industrial wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AbuDalo, M. A., Nevostrueva, S., & Hernandez, M. T. (2013). Enhanced copper (II) removal from acidic water by granular activated carbon impregnated with carboxybenzotriazole. APCBEE Procedia, 5, 64–68.

    Article  CAS  Google Scholar 

  • Alvarez-Uriarte, J. I., Iriarte-Velasco, U., Chimeno-Alanis, N., & Gonzalez-Velasco, J. R. (2010). The effect of mixed oxidants and powdered activated carbon on the removal of natural organic matter. Journal of Hazardous Materials, 181, 426–431.

    Article  CAS  Google Scholar 

  • Ao, Y., Xu, J., Fu, D., Shen, X., & Yuan, C. (2008). Low temperature preparation of anatase TiO2-coated activated carbon. Colloids and Surfaces A, 312, 125–130.

    Article  CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Aruldoss, U., Kennedy, L. J., Vijaya, J. J., & Sekaran, G. (2011). Photocatalytic degradation of phenolic syntan using TiO2 impregnated activated carbon. Journal of Colloid and Interface Science, 355, 204–209.

    Article  CAS  Google Scholar 

  • Belessi, V., Lambropoulou, D., Konstantinou, I., Katsoulidis, A., Pomonis, P., Petridis, D., & Albanis, T. (2007). Structure and photocatalytic performance of TiO2/claynanocomposites for the degradation of dimethachlor. Applied Catalysis B-Environmental, 73, 292–299.

    Article  CAS  Google Scholar 

  • Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Research, 44, 2997–3027.

    Article  CAS  Google Scholar 

  • Das, K. C., Minkara, M. Y., Melear, N. D., & Tollner, E. W. (2002). Effect of poultry litter amendment on hatchery waste composting. Journal of Applied Poultry Research, 11, 282–290.

    Article  Google Scholar 

  • Fu, P., Luan, Y., & Dai, X. (2004). Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity. Journal of Molecular Catalysis A Chemical, 221, 81–88.

    Article  CAS  Google Scholar 

  • Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38.

    Article  CAS  Google Scholar 

  • Gao, B., Yap, P. S., Lim, T. M., & Lim, T. T. (2011). Adsorption-photocatalytic degradation of acid red 88 by supported TiO2: effect of activated carbon support and aqueous anions. Chemical Engineering Journal, 171, 1098–1107.

    Article  CAS  Google Scholar 

  • Gu, L., Chen, Z., Sun, C., Wei, B., & Yu, X. (2010). Photocatalytic degradation of 2,4-dichlorophenol using granular activated carbon supported TiO2. Desalination, 263, 107–112.

    Article  CAS  Google Scholar 

  • Habibi, M. H., Nasr-Esfahani, M., & Egerton, T. A. (2007). Preparation, characterization and photocatalytic activity of TiO2/methylcellulose nanocomposite films derived from nanopowder TiO2 and modified sol–gel titania. Journal of Materials Science, 42, 6027–6035.

    Article  CAS  Google Scholar 

  • Haque, F., Vaisman, E., Langford, C. H., & Kantzas, A. (2005). Preparation and performance of integrated photocatalyst adsorbent (IPCA) employed to degrade model organic compounds in synthetic wastewater. Journal of Photochemistry and Photobiology A, 169, 21–27.

    Article  CAS  Google Scholar 

  • Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69–96.

    Article  CAS  Google Scholar 

  • Khalid, A., Khan, A. S., Nazli, Z., Mahmood, T., Siddique, M. T., Mahmood, S., & Arshad, M. (2011). Post-treatment of aerobically pretreated poultry litter leachate using fenton and photo-fenton processes. International Journal of Agriculture and Biology, 13, 439–443.

    CAS  Google Scholar 

  • Kibanova, D., Trejo, M., Destaillats, H., & Cervini-Silva, J. (2009). Synthesis of hectorite–TiO2 and kaolinite–TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants. Applied Clay Science, 42, 563–568.

    Article  CAS  Google Scholar 

  • Kondo, M. M., Leite, K. U. C. G., Silva, M. R. A., & Reis, A. D. P. (2010). Fenton and photo-fenton processes coupled to UASB to treat coffee pulping wastewater. Separation Science and Technology, 45, 1506–1511.

    Article  CAS  Google Scholar 

  • Lei, P., Wang, F., Gao, X., Ding, Y., Zhang, S., Zhao, J., Liu, S., & Yang, M. (2012). Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. Journal of Hazardous Materials, 227–228, 185–194.

    Article  Google Scholar 

  • Li, Y., Zhang, S., Yu, Q., & Yin, W. (2007). The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol–gel method. Applied Surface Science, 253, 9254–9258.

    Article  CAS  Google Scholar 

  • Li, Y., Sun, S., Ma, M., Ouyang, Y., & Yan, W. (2008). Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO2-coated activated carbon catalyst: effects of initial RhB content, light intensity and TiO2 content in the catalyst. Chemical Engineering Journal, 142, 147–155.

    Article  CAS  Google Scholar 

  • Lin, H. F., Ravikrishna, R., & Valsaraj, K. T. (2002). Reusable adsorbents for dilute solution separation. 6. Batch and continuous reactors for the adsorption and degradation of 1,2-dichlorobenzene from dilute wastewater streams using titania as a photocatalyst. Separation and Purification Technology, 28, 87–102.

    Article  CAS  Google Scholar 

  • Li-Puma, G., Bono, A., Krishnaiah, D., & Collin, J. G. (2008). Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. Journal of Hazardous Materials, 157, 209–219.

    Article  CAS  Google Scholar 

  • Ludwig, C. Y., Byrne, H. E., Stokke, J. M., Chadik, P. A., & Mazyck, D. W. (2011). Performance of silica-titania carbon composites for photocatalytic degradation of gray water. Journal of Environmental Engineering, 137, 38–45.

    Article  CAS  Google Scholar 

  • Matos, J., Laine, J., & Herrmann, J. M. (2001). Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV–irradiated titania. Journal of Catalysis, 200, 10–20.

    Article  CAS  Google Scholar 

  • Nakano, R., Chand, R., Obuchi, E., Katoh, K., & Nakano, K. (2011). Performance of TiO2 photocatalyst supported on silica beads for purification of wastewater after absorption of reflow exhaust gas. Chemical Engineering Journal, 176–177, 260–264.

    Article  Google Scholar 

  • Pekakis, P. A., Xekoukoulotakis, N. P., & Mantzavinos, D. (2006). Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research, 40, 1276–1286.

    Article  CAS  Google Scholar 

  • Petrova, B., Tsyntsarski, B., Budinova, T., Petrov, N., Velasco, L. F., & Ania, C. O. (2011). Activated carbon from coal tar pitch and furfural for the removal of p-nitrophenol and m-nitrophenol. Journal of Chemical Engineering, 172, 102–108.

    Article  CAS  Google Scholar 

  • Pozzo, R. L., Giombi, J. L., Baltanas, M. A., & Cassano, A. E. (2000). The performance in a fluidized bed reactor of photocatalysts immobilized onto inert supports. Catalysis Today, 62, 175–187.

    Article  CAS  Google Scholar 

  • Ray, A. K. (1999). Design, modelling and experimentation of a new large-scale photocatalytic reactor for water treatment. Chemical Engineering Science, 54, 3113–3125.

    Article  CAS  Google Scholar 

  • Remya, N., & Lin, J. G. (2011). Microwave-assisted carbofuran degradation in the presence of GAC, ZVI and H2O2: influence of reaction temperature and pH. Separation and Purification Technology, 76(3), 244–252.

    Article  CAS  Google Scholar 

  • Singh, S., Mahalingam, H., & Singh, P. K. (2013). Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Applied Catalysis A-General, 462– 463, 178–195.

    Article  Google Scholar 

  • Sopyan, I., Watanabe, M., Murasawa, S., Hashimoto, K., & Fujishima, A. (1996). An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation. Journal of Photochemistry and Photobiology A, 98, 79–86.

    Article  CAS  Google Scholar 

  • Strini, A., Cassese, S., & Schiavi, L. (2005). Measurement of benzene, toluene, ethyl benzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B Environmental, 61, 90–97.

    Article  CAS  Google Scholar 

  • Velasco, L. F., Parra, J. B., & Ania, C. O. (2010). Role of activated carbon features on the photocatalytic degradation of phenol. Applied Surface Science, 256, 5254–5258.

    Article  CAS  Google Scholar 

  • Velasco, L. F., Fonseca, I. M., Parra, J. B., Lima, J. C., & Ania, C. O. (2012). Photochemical behaviour of activated carbons under UV irradiation. Carbon, 50, 249–258.

    Article  CAS  Google Scholar 

  • Velasco, L. F., Maurino, V., Laurenti, E., Fonseca, I. M., Lima, J. C., & Ania, C. O. (2013). Photoinduced reactions occurring on activated carbons. A combined photooxidation and ESR study. Applied Catalysis A-General, 452, 1–8.

    Article  CAS  Google Scholar 

  • Wang, X., Hu, Z., Chen, Y., Zhao, G., Liu, Y., & Wen, Z. (2009). A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Applied Surface Science, 255, 3953–3958.

    Article  CAS  Google Scholar 

  • Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Ikeue, K., & Anpo, M. (2002). Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. Journal of Photochemistry and Photobiology A, 148, 257–261.

    Article  CAS  Google Scholar 

  • Yao, S., Li, J., & Shi, Z. (2010). Immobilization of TiO2 nanoparticles on activated carbon fiber and its photodegradation performance for organic pollutants. Journal Particuology, 8, 272–278.

    Article  CAS  Google Scholar 

  • Zhang, X., & Lei, L. (2008). Effect of preparation methods on the structure and catalytic performance of TiO2/AC photocatalysts. Journal of Hazardous Materials, 153, 827–833.

    Article  CAS  Google Scholar 

  • Zhang, Z., Xu, Y., Ma, X., Li, F., Liu, D., Chen, Z., Zhang, F., & Dionysiou, D. D. (2012). Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW). Journal of Hazardous Materials, 209–210, 271–277.

    Article  Google Scholar 

  • Zhu, B., & Zou, L. (2009). Trapping and decomposing of color compounds from recycled water by TiO2 coated activated carbon. Journal of Environmental Management, 90, 3217–3225.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Science and Engineering Research Board (SERB) of Department of Science and Technology (DST), India for the financial support (Grant Ref. No: SR/FTP/ETA-122/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathava Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asha, R.C., Vishnuganth, M.A., Remya, N. et al. Livestock Wastewater Treatment in Batch and Continuous Photocatalytic Systems: Performance and Economic Analyses. Water Air Soil Pollut 226, 132 (2015). https://doi.org/10.1007/s11270-015-2396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2396-4

Keywords

Navigation