Skip to main content

Advertisement

Log in

Chelant-Assisted Depollution of Metal-Contaminated Fe-Coated Sands and Subsequent Recovery of the Chemicals Using Solid-Phase Extraction Systems

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The disposal of potentially toxic element (PTE)-loaded sludge that is produced during industrial or commercial wastewater treatments evoke concerns because of the probability of hazardous environmental consequences. In the current work, we proposed a chelant-assisted decontamination technique of the laboratory-produced PTE-loaded (As, Cd, Pb) polymeric-Fe-coated sludge and subsequent recovery of the chelants and PTEs. The chelant options include both biodegradable (EDDS, GLDA, and HIDS) and non-biodegradable (EDTA) alternatives. The washing performance was compared and discussed in terms of the solution pH and relative stabilities of the complexes of PTEs and chelants in solution. The changes in solution pH or chelants have no significant effect on the chelant-induced removal efficiency of Cd, and the same result was observed for Pb at extreme and moderate acidic pH. The As-extraction rate is also improved with chelant in the solution despite a limited interaction between the chelant and the arsenic species in the solution. The column-packed solid-phase extraction (SPE) system, which was equipped with macrocycle, chelating resin, or ion-exchange resin, was used to explore the corresponding separation performance of the PTEs and chelant. The macrocycle-equipped SPE system shows better selectivity than other SPEs in terms of extraction and recovery performance of the PTEs regardless of the chelants. Some unique points of the proposed process are minimum environmental burden due to the use of biodegradable materials in the washing solution and cost minimization by recycling the ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., & Vacca, A. (1999). Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coordination Chemistry Reviews, 184, 311–318.

    Article  CAS  Google Scholar 

  • Badruzzaman, A. (2003). Leaching of arsenic from wastes of arsenic removal systems. In M. F. Ahmed, M. A. Ali, & Z. Adeel (Eds.), Fate of arsenic in the environment. Dhaka, Bangladesh: ITN Centre, BUET.

    Google Scholar 

  • Begum, Z. A., Rahman, I. M. M., Tate, Y., Sawai, H., Maki, T., & Hasegawa, H. (2012a). Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Chemosphere, 87, 1161–1170.

    Article  CAS  Google Scholar 

  • Begum, Z. A., Rahman, I. M. M., Tate, Y., Egawa, Y., Maki, T., & Hasegawa, H. (2012b). Formation and stability of binary complexes of divalent ecotoxic ions (Ni, Cu, Zn, Cd, Pb) with biodegradable aminopolycarboxylate chelants (dl-2-(2-carboxymethyl)nitrilotriacetic acid, GLDA, and 3-hydroxy-2,2′-iminodisuccinic acid, HIDS) in aqueous solutions. Journal of Solution Chemistry, 41, 1713–1728.

    Article  CAS  Google Scholar 

  • Begum, Z. A., Rahman, I. M. M., Sawai, H., Tate, Y., Maki, T., & Hasegawa, H. (2012c). Stability constants of Fe(III) and Cr(III) complexes with dl-2-(2-carboxymethyl)nitrilotriacetic acid (GLDA) and 3-hydroxy-2,2′-iminodisuccinic acid (HIDS) in aqueous solution. Journal of Chemical & Engineering Data, 57, 2723–2732.

    Article  CAS  Google Scholar 

  • Begum, Z. A., Rahman, I. M. M., Sawai, H., Mizutani, S., Maki, T., & Hasegawa, H. (2013). Effect of extraction variables on the biodegradable chelant-assisted removal of toxic metals from artificially contaminated European reference soils. Water, Air, & Soil Pollution, 224, 1381.

    Article  Google Scholar 

  • Capra, G. F., Coppola, E., Odierna, P., Grilli, E., Vacca, S., & Buondonno, A. (2014). Occurrence and distribution of key potentially toxic elements (PTEs) in agricultural soils: a paradigmatic case study in an area affected by illegal landfills. Journal of Geochemical Exploration, 145, 169–180.

    Article  CAS  Google Scholar 

  • Cooper, C., Jiang, J.-Q., & Ouki, S. (2002). Preliminary evaluation of polymeric Fe- and Al-modified clays as adsorbents for heavy metal removal in water treatment. Journal of Chemical Technology & Biotechnology, 77, 546–551.

    Article  CAS  Google Scholar 

  • Cundy, A. B., Hopkinson, L., & Whitby, R. L. D. (2008). Use of iron-based technologies in contaminated land and groundwater remediation: a review. Science of the Total Environment, 400, 42–51.

    Article  CAS  Google Scholar 

  • Davidge, J., Thomas, C. P., & Williams, D. R. (2001). Conditional formation constants or chemical speciation data? Chemical Speciation and Bioavailability, 13, 129–134.

    Article  CAS  Google Scholar 

  • Dubois, I. E., Holgersson, S., Allard, S., & Malmström, M. E. (2011). Dependency of BET surface area on particle size for some granitic minerals. Proceedings in Radiochemistry: A Supplement to Radiochimica Acta, 1, 75–82.

    Google Scholar 

  • Duffus, J. H. (2002). “Heavy metals” a meaningless term? Pure and Applied Chemistry, 74, 793–807.

    Article  CAS  Google Scholar 

  • Dutré, V., & Vandecasteele, C. (1995). Solidification/stabilisation of hazardous arsenic containing waste from a copper refining process. Journal of Hazardous Materials, 40, 55–68.

    Article  Google Scholar 

  • Elliott, H. A., & Brown, G. A. (1989). Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water, Air, & Soil Pollution, 45, 361–369.

    Article  CAS  Google Scholar 

  • Fischer, K., & Bipp, H. P. (2002). Removal of heavy metals from soil components and soils by natural chelating agents. Part II. Soil extraction by sugar acids. Water, Air, and Soil Pollution, 138, 271–288.

    Article  CAS  Google Scholar 

  • Ford, R. G. (2002). Rates of hydrous ferric oxide crystallization and the influence on coprecipitated arsenate. Environmental Science & Technology, 36, 2459–2463.

    Article  CAS  Google Scholar 

  • Giles, D. E., Mohapatra, M., Issa, T. B., Anand, S., & Singh, P. (2011). Iron and aluminium based adsorption strategies for removing arsenic from water. Journal of Environmental Management, 92, 3011–3022.

    Article  CAS  Google Scholar 

  • Halim, C. E., Scott, J. A., Natawardaya, H., Amal, R., Beydoun, D., & Low, G. (2004). Comparison between acetic acid and landfill leachates for the leaching of Pb(II), Cd(II), As(V), and Cr(VI) from cementitious wastes. Environmental Science & Technology, 38, 3977–3983.

    Article  CAS  Google Scholar 

  • Hasegawa, H., Rahman, I. M. M., Nakano, M., Begum, Z. A., Egawa, Y., Maki, T., Furusho, Y., & Mizutani, S. (2011). Recovery of toxic metal ions from washing effluent containing excess aminopolycarboxylate chelant in solution. Water Research, 45, 4844–4854.

    Article  CAS  Google Scholar 

  • Hong, J., & Pintauro, P. N. (1996). Desorption-complexation-dissolution characteristics of adsorbed cadmium from kaolin by chelators. Water, Air, and Soil Pollution, 86, 35–50.

    Article  CAS  Google Scholar 

  • Horowitz, A. J., & Elrick, K. A. (1987). The relation of stream sediment surface area, grain size and composition to trace element chemistry. Applied Geochemistry, 2, 437–451.

    Article  CAS  Google Scholar 

  • Izatt, R. M., Bradshaw, J. S., Bruening, R. L., Tarbet, B. J., & Bruening, M. L. (1995). Solid phase extraction of ions using molecular recognition technology. Pure and Applied Chemistry, 67, 1069–1074.

    CAS  Google Scholar 

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, 167–182.

    Article  Google Scholar 

  • Jessen, S., Larsen, F., Koch, C. B., & Arvin, E. (2005). Sorption and desorption of arsenic to ferrihydrite in a sand filter. Environmental Science & Technology, 39, 8045–8051.

    Article  CAS  Google Scholar 

  • Jiang, J. Q., & Graham, N. J. D. (1996). Enhanced coagulation using Al/Fe(III) coagulants: Effect of coagulant chemistry on the removal of colour-causing NOM. Environmental Technology, 17, 937–950.

    Article  CAS  Google Scholar 

  • Jiang, J.-Q., & Graham, N. J. D. (1998). Preparation and characterisation of an optimal polyferric sulphate (PFS) as a coagulant for water treatment. Journal of Chemical Technology & Biotechnology, 73, 351–358.

    Article  CAS  Google Scholar 

  • Jiang, J.-Q., & Zeng, Z. (2003). Comparison of modified montmorillonite adsorbents: Part II: The effects of the type of raw clays and modification conditions on the adsorption performance. Chemosphere, 53, 53–62.

    Article  CAS  Google Scholar 

  • Jiang, J.-Q., Cooper, C., & Ouki, S. (2002). Comparison of modified montmorillonite adsorbents: Part I: Preparation, characterization and phenol adsorption. Chemosphere, 47, 711–716.

    Article  CAS  Google Scholar 

  • Jing, C., Korfiatis, G. P., & Meng, X. (2003). Immobilization mechanisms of arsenate in iron hydroxide sludge stabilized with cement. Environmental Science & Technology, 37, 5050–5056.

    Article  CAS  Google Scholar 

  • Kim, C., & Ong, S.-K. (1999). Recycling of lead-contaminated EDTA wastewater. Journal of Hazardous Materials, 69, 273–286.

    Article  CAS  Google Scholar 

  • Kuan, W. H., Lo, S. L., Wang, M. K., & Lin, C. F. (1998). Removal of Se(IV) and Se(VI) from water by aluminum-oxide-coated sand. Water Research, 32, 915–923.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2007). Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat. Environmental Pollution, 145, 365–373.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management, 28, 215–225.

    Article  CAS  Google Scholar 

  • LaGrega, M. D., Buckingham, P. L., & Evans, J. C. (1994). Hazardous waste management. New York: McGraw-Hill.

    Google Scholar 

  • Leupin, O. X., Hug, S. J., & Badruzzaman, A. B. M. (2005). Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand. Environmental Science & Technology, 39, 8032–8037.

    Article  CAS  Google Scholar 

  • Lim, T. T., Tay, J. H., & Wang, J. Y. (2004). Chelating-agent-enhanced heavy metal extraction from a contaminated acidic soil. Journal of Environmental Engineering-ASCE, 130, 59–66.

    Article  CAS  Google Scholar 

  • Martell, A. E., & Hancock, R. D. (1996). Metal complexes in aqueous solutions. New York: Plenum Press.

    Book  Google Scholar 

  • Martell, A. E., Smith, R. M., & Motekaitis, R. J. (2004). NIST Standard Reference Database 46: NIST Critically Selected Stability Constants of Metal Complexes Database (Version 8.0 For Windows). College Station, TX: Texas A&M University.

    Google Scholar 

  • Mohammed, A. S., Kapri, A., & Goel, R. (2011). Heavy metal pollution: source, impact, and remedies. In M. S. Khan, A. Zaidi, R. Goel, & J. Musarrat (Eds.), Biomanagement of metal-contaminated soils. Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Nowack, B. (2002). Environmental chemistry of aminopolycarboxylate chelating agents. Environmental Science & Technology, 36, 4009–4016.

    Article  CAS  Google Scholar 

  • Orama, M., Hyvonen, H., Saarinen, H. & Aksela, R. (2002). Complexation of [S,S] and mixed stereoisomers of N,N′-ethylenediaminedisuccinic acid (EDDS) with Fe(III), Cu(II), Zn(II) and Mn(II) ions in aqueous solution. Journal of the Chemical Society, Dalton Transactions, 4644–4648. doi:10.1039/B207777A

  • Peters, R. W. (1999). Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66, 151–210.

    Article  CAS  Google Scholar 

  • Polettini, A., Pomi, R., & Rolle, E. (2007). The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment. Chemosphere, 66, 866–877.

    Article  CAS  Google Scholar 

  • Rahman, I. M. M., Begum, Z. A., & Hasegawa, H. (2011a). Application of molecular recognition technology: for selective solid phase extraction of ions. Saarbrücken, Germany: Lambert Academic Publishing.

    Google Scholar 

  • Rahman, I. M. M., Begum, Z. A., Nakano, M., Furusho, Y., Maki, T., & Hasegawa, H. (2011b). Selective separation of arsenic species from aqueous solutions with immobilized macrocyclic material containing solid phase extraction columns. Chemosphere, 82, 549–556.

    Article  CAS  Google Scholar 

  • Rahman, I. M. M., Furusho, Y., Begum, Z. A., Izatt, N., Bruening, R., Sabarudin, A., & Hasegawa, H. (2011c). Separation of lead from high matrix electroless nickel plating waste solution using an ion-selective immobilized macrocycle system. Microchemical Journal, 98, 103–108.

    Article  CAS  Google Scholar 

  • Rahman, I. M. M., Begum, Z. A., & Hasegawa, H. (2013a). Selective separation of elements from complex solution matrix with molecular recognition plus macrocycles attached to a solid-phase: a review. Microchemical Journal, 110, 485–493.

    Article  CAS  Google Scholar 

  • Rahman, I. M. M., Begum, Z. A., Sawai, H., Maki, T., & Hasegawa, H. (2013b). Decontamination of spent iron-oxide coated sand from filters used in arsenic removal. Chemosphere, 92, 196–200.

    Article  CAS  Google Scholar 

  • Scheidegger, A., Borkovec, M., & Sticher, H. (1993). Coating of silica sand with goethite - Preparation and analytical identification. Geoderma, 58, 43–65.

    Article  CAS  Google Scholar 

  • US EPA. (1996). Test methods for evaluating solid waste, physical/chemical methods (EPA method 3052: microwave assisted acid digestion of siliceous and organically based matrices) (SW-846). Washington, D.C.: Environmental Protection Agency (EPA).

  • US EPA . (2012). The Clean Water Act (Priority Pollutants: Appendix A to 40 CFR Part 423). Washington, D.C.: Environmental Protection Agency (EPA).

  • van Herwijnen, R., Hutchings, T. R., Al-Tabbaa, A., Moffat, A. J., Johns, M. L., & Ouki, S. K. (2007). Remediation of metal contaminated soil with mineral-amended composts. Environmental Pollution, 150, 347–354.

    Article  Google Scholar 

  • Vandevivere, P., Hammes, F., Verstraete, W., Feijtel, T., & Schowanek, D. (2001). Metal decontamination of soil, sediment, and sewage sludge by means of transition metal chelant [S, S]-EDDS. Journal of Environmental Engineering-ASCE, 127, 802–811.

    Article  CAS  Google Scholar 

  • Ying, X., & Axe, L. (2005). Synthesis and characterization of iron oxide-coated silica and its effect on metal adsorption. Journal of Colloid and Interface Science, 282, 11–19.

    Article  Google Scholar 

  • Zou, Z., Qiu, R., Zhang, W., Dong, H., Zhao, Z., Zhang, T., Wei, X., & Cai, X. (2009). The study of operating variables in soil washing with EDTA. Environmental Pollution, 157, 229–236.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was partially supported by the Grants-in-Aid for Scientific Research (24310056) from the Japan Society for the Promotion of Science. One of the authors, Ismail M. M. Rahman, acknowledges the financial grant from the Public Foundation of Chubu Science and Technology Center, Japan, to support his research at Kanazawa University, Japan. The authors also acknowledge the kind support from Dr. Md. Alamgir (Department of Soil Science, University of Chittagong, Chittagong 4331, Bangladesh) for the statistical analysis of the data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ismail M. M. Rahman, Zinnat A. Begum or Hiroshi Hasegawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, I.M.M., Begum, Z.A., Sawai, H. et al. Chelant-Assisted Depollution of Metal-Contaminated Fe-Coated Sands and Subsequent Recovery of the Chemicals Using Solid-Phase Extraction Systems. Water Air Soil Pollut 226, 37 (2015). https://doi.org/10.1007/s11270-015-2312-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2312-y

Keywords

Navigation