Water, Air, & Soil Pollution

, Volume 223, Issue 1, pp 371–387 | Cite as

Testing the Feasibility of Using the ForSAFE-VEG Model to Map the Critical Load of Nitrogen to Protect Plant Biodiversity in the Rocky Mountains Region, USA

  • Harald Sverdrup
  • Todd C. McDonnell
  • Timothy J. Sullivan
  • Bengt Nihlgård
  • Salim Belyazid
  • Beat Rihm
  • Ellen Porter
  • William D. Bowman
  • Linda Geiser
Article

Abstract

The ForSAFE-VEG model was used to estimate atmospheric nitrogen deposition and climate effects on soil chemistry and ground vegetation in alpine and subalpine zones of the northern and central Rocky Mountains region in the USA from 1750 to 2500. Model simulations for a generalized site illustrated how the critical load of atmospheric nitrogen deposition could be estimated to protect plant biodiversity. The results appear reasonable compared with past model applications in northern Europe. Atmospheric N deposition critical loads estimated to protect plant biodiversity were 1 to 2 kg N/ha/year. This range could be greater, depending on the values selected for critical site-specific parameters (precipitation, temperature, soil chemistry, plant nutrient uptake, and any eventual harvest of biomass) and the amount of biodiversity change allowed.

Keywords

Nitrogen Climate Eutrophication Alpine Vegetation 

Notes

Acknowledgments

This study was funded by the National Park Service, Air Resources Division, Denver Colorado, through a contract with E&S Environmental Chemistry, Inc. Vegetation response data for the Rocky Mountains region were provided by the Denver Workshop participants. The participation of Dr. B. Nihlgård was sponsored by the Swedish Critical Loads Programme, funded by the Swedish Environmental Protection Agency.

Supplementary material

11270_2011_865_MOESM1_ESM.doc (342 kb)
ESM 1 (DOC 341 KB)

References

  1. Achermann, B., & Bobbink, R., eds. (2003). Empirical critical loads for nitrogen. Proceedings of an expert workshop, 11–13 November 2002, Berne. Environmental Documentation No. 164. Swiss Agency for the Environment, Forests and Landscape, Berne. (Similar workshops occurred in 2008 and 2010).Google Scholar
  2. Akselsson, C., Holmqvist, J., Alveteg, M., Kurz, D., & Sverdrup, H. (2004). Scaling and mapping of regional calculations of soil chemical weathering rates in Sweden. Water Air and Soil Pollution Focus, 4, 671–681.CrossRefGoogle Scholar
  3. Akselsson, C., Sverdrup, H., & Holmqvist, J. (2005). Estimating weathering rates of Swedish forest soils in different scales, using the PROFILE model and affiliated databases. Sustainable Forestry, 21, 119–131.CrossRefGoogle Scholar
  4. Alveteg, M., Sverdrup, H., & Warfvinge, P. (1996). Regional assessment of dynamic aspects of soil acidification in southern Sweden. Water, Air, and Soil Pollution, 85, 2509–2514.CrossRefGoogle Scholar
  5. Alveteg, M., Kurz, D., & Sverdrup, H. (1998). Integrated assessment of soil chemical status. 1: Integration of existing models and derivation of a regional database for Switzerland. Water, Air, and Soil Pollution, 105, 1–9.CrossRefGoogle Scholar
  6. Barkman, A., Schlyter, P., Lejonklev, M., Alveteg, M., Warfvinge, P., Sverdrup, H., et al. (1999). Uncertainties in high resolution critical load assessment for forest soils—possibilities and constraints of combining distributed soil modelling and GIS. Geographical and Environmental Modelling, 3(2), 125–143.Google Scholar
  7. Belyazid, S., & Moldan F. (2009). Using ForSAFE-Veg to investigate the feasibility and requirements of setting critical loads for N based on vegetation change, a pilot study at Gårdsjön. IVL report B1875. Göteborg, Sweden.Google Scholar
  8. Belyazid, S., Westling, O., & Sverdrup, H. (2006). Modeling changes in soil chemistry at 16 Swedish coniferous forest sites following deposition reduction. Environmental Pollution, 144, 596–609.CrossRefGoogle Scholar
  9. Belyazid, S., Kurz, D., Braun, S., Sverdrup, H., Rihm, B., & Hettelingh, J. P. (2010). A dynamic modeling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate. Environmental Pollution, 159, 789–801.CrossRefGoogle Scholar
  10. Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20(1), 30–59.CrossRefGoogle Scholar
  11. Bowman, W. D., Gartner, J. R., Holland, K., & Wiedermann, M. (2006). Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet? Ecological Applications, 16(3), 1183–1193.CrossRefGoogle Scholar
  12. Bowman, W. D., Cleveland, C. C., Halada, L., Hresko, J., & Baron, J. S. (2008). Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 1, 767–770.CrossRefGoogle Scholar
  13. Bray, J. R., & Curtis, J. T. (1957). An ordination of upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325–349.CrossRefGoogle Scholar
  14. Dahl, E. (1998). The phytogeography of northern Europe (p. 297). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. de Vries, W., Wamelink, W. W., van Dobben, H., Kros, J., Reinds, G. J., Mol-Dijkstra, J., et al. (2010). Use of dynamic soil–vegetation models to assess impacts of nitrogen deposition on plant species composition: An overview. Ecological Applications, 20, 60–79.CrossRefGoogle Scholar
  16. Driscoll, C. T., Whitall, D., Aber, J., Boyer, E., Castro, M., Cronan, C., et al. (2003). Nitrogen pollution in the northeastern United States: Sources, effects, and management options. BioScience, 53(4), 357–374.CrossRefGoogle Scholar
  17. E&S Environmental Chemistry, Inc. (2009). Alpine vegetation workshop: Response of alpine and subalpine plant species to changes in atmospheric N deposition. Final report. Corvallis: E&S Environmental Chemistry.Google Scholar
  18. Economic Commission for Europe (ECE). (2010). Empirical critical loads and dose–response relationships. In Executive Body for the Convention on Long-range Transboundary Air Pollution. Working Group on Effects, ECE/EB.AIR/WG.1/2010/14.Google Scholar
  19. Ellenberg, H., Weber, H. E., Dull, R., Wirth, V., Werner, W., & Paulissen, D. (1991). Zeigerwerte der gefasspflanzen in Mitteleuropa. Scripta Botanica, 18, 1–248.Google Scholar
  20. Fenn, M. E., Haeuber, R., Tonnesen, G. S., Baron, J. S., Grossman-Clark, S., Hope, D., et al. (2003). Nitrogen emissions, deposition, and monitoring in the western United States. BioScience, 53(4), 391–403.CrossRefGoogle Scholar
  21. Hautier, Y., Niklaus, P. A., & Hector, A. (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636–638.CrossRefGoogle Scholar
  22. Hettelingh, J. P., Posch, M., Slootweg, J., Bobbink, R., & Alkemade, R. (2008). Tentative dose–response function applications for integrated assessment. In J. P. Hettelingh, M. Posch, & J. Slootweg (Eds.), CCE status report 2008 (p. 89). Bilthoven: Netherlands Environmental Assessment Agency.Google Scholar
  23. Landolt, E. (1977). Ökologische Zeigerwerte zur Schweizer Flora. Veröff Geobot Inst ETH Rübel Zürich, 64, 1–208.Google Scholar
  24. Nilsson, J., & Grennfelt, P. (Eds.). (1988). Critical loads for sulphur and nitrogen. Report 1988:15. Copenhagen: Nordic Council of Ministers.Google Scholar
  25. NRCS (Natural Resources Conservation Service) (2009). U.S. general soil map (STATSGO2). U.S. Department of Agriculture. Available online at http://soildatamart.nrcs.usda.gov. Accessed Feb 05 2009.
  26. Pachauri, R. K., & Reisinger, A. (Eds.) (2007). Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, pp 104Google Scholar
  27. Pardo, L. H. (2010). Approaches for estimating critical loads of nitrogen and sulfur deposition for forest ecosystems on U.S. Federal Lands, General Technical Report NRS-71. Newtown Square: USDA Forest Service, Northern Research Station.Google Scholar
  28. Porter, E., Blett, T., Potter, D. U., & Huber, C. (2005). Protecting resources on federal lands: Implications of critical loads for atmospheric deposition of nitrogen and sulfur. BioScience, 55(7), 603–612.CrossRefGoogle Scholar
  29. PRISM (Parameter-elevation Regressions on Independent Slopes Model) (2006). United States average annual precipitation and temperature, 1971–2000. Ashville, NC. Available online at http://www.prism.oregonstate.edu/. Accessed Jan 29 2009.
  30. Schlutow, A., & Huebener, P. (2004). The BERN model: Bioindication for ecosystem regeneration towards natural conditions. Research report 200 85 221. Berlin: Environmental Research of the Federal Ministry of the Environment, Nature Conservation and Nuclear Safety.Google Scholar
  31. Sverdrup, H. (1990). Kinetics of base cation release from chemical weathering of silicate minerals. London: Lund University Press–Chartwell-Bratt. 245 pp.Google Scholar
  32. Sverdrup, H. (2009). Chemical weathering of soil minerals and the role of biological processes. Fungal Biology Reviews, 23, 94–100.CrossRefGoogle Scholar
  33. Sverdrup, H., & Warfvinge, P. (1988a). Assessment of critical loads of acid deposition on forest soils. In J. Nilsson (Ed.), Critical loads for sulphur and nitrogen. Proceedings from the Skokloster Workshop. Nordic Council of Ministers Miljörapport 15 (pp. 81–130). Stockholm: Nordic Council of Ministers and the United Nations Economic Commission for Europe (ECE).Google Scholar
  34. Sverdrup, H., & Warfvinge, P. (1988b). Weathering of primary silicate minerals in the natural soil environment in relation to a chemical weathering model. Water, Air, and Soil Pollution, 38, 387–408.Google Scholar
  35. Sverdrup, H., & Warfvinge, P. (1993). The effect of soil acidification on the growth of trees, grass and herbs as expressed by the (Ca + Mg + K)/Al ratio. Reports in Ecology and Environmental Engineering 2:1993. Lund: Chemical Engineering, Lund University.Google Scholar
  36. Sverdrup, H., Warfvinge, P., Janicki, A., Morgan, R., Rabenhorst, M., & Bowman, M. (1992). Mapping critical loads and steady state stream chemistry in the state of Maryland. Environmental Pollution, 77, 195–203.CrossRefGoogle Scholar
  37. Sverdrup, H., Warfvinge, P., & Rosen, K. (1996a). Critical loads of acidity and nitrogen, based on multiple criteria for different Swedish ecosystems. Water, Air, and Soil Pollution, 85, 2375–2380.Google Scholar
  38. Sverdrup, H., Warfvinge, P., & Britt, D. (1996b). Assessing the potential for forest effects due to soil acidification in Maryland. Water, Air, and Soil Pollution, 87, 245–265.CrossRefGoogle Scholar
  39. Sverdrup, H., Belyazid, S., Haraldsson, H., & Nihlgård, B. (2005a). Modelling change in ground vegetation from effects of nutrients, pollution, climate, grazing and land use. In E. Oddsdottir & G. Halldorsson (Eds.), Effects of afforestation on ecosystems, landscape and rural development. Proceedings from a conference held at Reykholt, Iceland, June 20–23, 2005. Andre nordiske publikasjoner, Chapter 1 (pp. 33–43). Copenhagen: Nordic Council of Ministers.Google Scholar
  40. Sverdrup, H., Martinsson, L., Alveteg, M., Moldan, F., Kronnäs, V., & Munthe, J. (2005b). Modeling recovery of Swedish ecosystems from acidification. Ambio, 34, 25–31.Google Scholar
  41. Sverdrup, H., Belyazid, S., Nihlgård, B., & Ericson, L. (2007). Modeling change in ground vegetation response to acid and nitrogen pollution, climate change and forest management in Sweden 1500–2100 A.D. Water Air and Soil Pollution Focus, 7, 163–179.CrossRefGoogle Scholar
  42. Sverdrup, H., Belyazid S., Kurz D. & Braun, S. (2008). Proposed method for estimating critical loads for nitrogen based on biodiversity using a fully integrated dynamic model, with testing in Switzerland and Sweden. In: H. Sverdrup, Towards critical loads for nitrogen based on biodiversity: Exploring a fully integrated dynamic model at test sites in Switzerland and Sweden. Background document for the 18th CCE workshop on the assessment of nitrogen effects under the ICP for Modelling and Mapping, LRTAP Convention (UNECE), Berne, Switzerland, 21–25 April 2008Google Scholar
  43. Theodose, T. A., & Bowman, W. D. (1997). Nutrient availability, plant abundance, and species diversity in two alpine tundra communities. Ecology, 78, 1861–1872.CrossRefGoogle Scholar
  44. Warfvinge, P., & Sverdrup, H. (1992). Calculating critical loads of acid deposition with PROFILE—a steady-state soil chemistry model. Water, Air, and Soil Pollution, 63, 119–143.CrossRefGoogle Scholar
  45. Warfvinge, P., Sverdrup, H., Ågren, G., & Rosen, K. (1992). Effekter av luftföroreningar på framtida skogstillväxt. In: L. Svensson (Ed.), Skogspolitiken inför 2000-talet-1990 års skogspolitiska kommitte. Statens Offentliga Utredningar; 1992 SOU (76, pp 377–412).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Harald Sverdrup
    • 1
  • Todd C. McDonnell
    • 2
  • Timothy J. Sullivan
    • 2
  • Bengt Nihlgård
    • 1
  • Salim Belyazid
    • 1
  • Beat Rihm
    • 3
  • Ellen Porter
    • 4
  • William D. Bowman
    • 5
  • Linda Geiser
    • 6
  1. 1.Biogeochemistry and Systems Analysis, Chemical EngineeringLund UniversityLundSweden
  2. 2.E&S Environmental Chemistry, Inc.CorvallisUSA
  3. 3.Meteotest AGBernSwitzerland
  4. 4.National Park Service, Air Resources DivisionDenverUSA
  5. 5.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
  6. 6.U.S. Forest Service, Pacific Northwest Region Air Resources Management ProgramCorvallisUSA

Personalised recommendations