Skip to main content
Log in

Biodegradation of High Concentrations of Benzene and Diesel in a Fixed-Film Reactor

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The degradation of benzene in groundwater at concentrations as high as 2,000 mg L−1 was studied using a four-column trickling-flow fixed-film biological reactor with recirculation. A decrease in the content of benzene was achieved, its concentration falling to 0.55 µg L−1. On the contrary, high levels of diesel fuel were not diminished sufficiently with this mode of operation of the reactor. Thus, a submerged reactor was tested as a modification to the conventional trickling-flow configuration. This modified fixed-film reactor was effective when high loadings of diesel were present as an emulsion. The concentration of diesel was reduced from 2,000 to 0.12 mg L−1 after 8 days of treatment. In both cases, the reactors were packed with a carbonaceous material and were operated in semibatch mode with recirculation. The final concentration of benzene fell below the permissible limit established by Mexican law, and the results for both pollutants also met the concentration limits required by the German law for drinking water, 0.001 mg L−1 for benzene and 0.1 mg L−1 for total hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvarez, P., & Vogel, T. M. (1991). Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Applied and Environmental Microbiology, 57(10), 2981–2985.

    CAS  Google Scholar 

  • Alvarez, P., & Vogel, T. M. (1995). Degradation of BTEX and their aerobic metabolites by indigenous microorganisms under nitrate reducing conditions. Water Science and Technology, 31(1), 15–28. doi:10.1016/0273-1223(95)00151-C.

    Article  CAS  Google Scholar 

  • Arcangeli, J.-P., & Arvin, E. (1995). Biodegradation rates of aromatic contaminants in biofilm reactors. Water Science and Technology, 31(1), 117–128. doi:10.1016/0273-1223(95)00160-O.

    Article  CAS  Google Scholar 

  • Baker, K. H., & Herson, D. S. (1994). Bioremediation. New York: McGraw-Hill.

    Google Scholar 

  • Bo, Y., Ping, X., Quan, S., & Cuiquing, M. (2006). Deep desulfurization of diesel oil and crude oil by a newly isolated Rhodococcus erythropolis strain. Applied and Environmental Microbiology, 72(6), 54–58.

    Google Scholar 

  • Chapelle, F. H. (2001). Groundwater microbiology and geochemistry. New York: Wiley.

    Google Scholar 

  • Characklis, W. G., & Marshall, K. C. (1990). Biofilms: A basis for an interdisciplinary approach. In W. G. Characklis & K. C. Marshall (Eds.), Biofilms. New York: Wiley.

    Google Scholar 

  • Cookson, J. T., Jr. (1995). Bioremediation engineering. In G. F. Navel, P. Lamb & P. A. Pelton (Eds.), Design and application. New York: McGraw-Hill.

    Google Scholar 

  • De Beer, D., & Stoodley, P. (1995). Proceedings of the Conference workshop: Biofilm structure, growth and dynamics. Noordwijkerhout, The Netherlands.

  • Demaneche, S., Meyer, C., Micoud, J., Louwagie, M., Willson, J. C., & Jouanneau, Y. (2004). Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 70(11), 6714–6725. doi:10.1128/AEM.70.11.6714-6725.2004.

    Article  CAS  Google Scholar 

  • Edel, H.-G., & Meyer-Murlowsky, T. (2000). Groundwater remediation using biofilm reactors, ZÜBLING Umwelttechnick GmbH. Stuttgart: Albstadtweg.

    Google Scholar 

  • Ghabbour, E. H., & Davies, G. (Eds.) (2001). Humic substances structures models and functions. Cambridge: RSC Publishing.

  • Joannis-Cassan, C., Delia, M., & Riba, J. P. (2005). Limitation phenomena induced by biofilm formation during hydrocarbon degradation. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 80(1), 99–106. doi:10.1002/jctb.1173.

    Article  CAS  Google Scholar 

  • Johnson, K. J., Rose-Pherson, L. S., & Morris, R. E. (2006). Evaluating the predictive powers of spectroscopy and chromatography for fuel quality assessment. Energy and Fuels, 20(2), 727–733. doi:10.1021/ef050347t.

    Article  CAS  Google Scholar 

  • King, R. B., Long, G. M., & Sheldom, J. K. (2000). Practical environmental bioremediation. Chelsea: Lewis.

    Google Scholar 

  • Macdonald, C. R., Cooper, D. G., & Zajic, J. R. (1981). Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Applied and Environmental Microbiology, 41(1), 117–123.

    CAS  Google Scholar 

  • Malachowsky, K. J., Phelps, T. J., Teboli, A. B., Minnikinans, D. E., & White, D. C. (1994). Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Applied and Environmental Microbiology, 60(2), 542–548.

    CAS  Google Scholar 

  • Marchal, R., Penet, S., Solano-Serena, F., & Vandecastelle, J. P. (2003). Gasoline and diesel oil biodegradation. Oil & Gas Science and Technology, 58, 441–448. doi:10.2516/ogst:2003027.

    Article  CAS  Google Scholar 

  • Massol-Deyá, A., Weller, R., Ríos-Hernández, L., Zhou, J. Z., Hickey, R. F., & Tiedje, J. M. (1997). Succession and convergence of biofilm community in fixed-film reactor treating aromatic hydrocarbons in groundwater. Applied and Environmental Microbiology, 63(1), 270–27.

    Google Scholar 

  • Metcalf and Eddy. (2003). Waste water engineering treatment and reuse. New York: McGraw-Hill.

    Google Scholar 

  • Oliveira, S. V. W. B., Moraes, E. M., Adorno, M. A. T., Varesche, M. B. A., Foresti, E., & Zaiat, M. (2004). Formaldehyde degradation in an anaerobic packed-bed bioreactor. Water Research, 38, 1685–1694. doi:10.1016/j.watres.2004.01.013.

    Article  CAS  Google Scholar 

  • Paschke, A., & Poop, P. (2004). Diffusion-based calibration for solid-phase microextraction of benzene, toluene, ethylbenzene, p-xylene and chlorobenzenes from aqueous samples. Journal of Chromatography, 1025, 11–16. doi:10.1016/j.chroma.2003.08.059.

    Article  CAS  Google Scholar 

  • Richardson, J.F., & Peacock, D.G. (Eds.) (2003). Chemical and biochemical reactors and process control. Chemical engineering, vol. 3, 3rd ed. London: Butterworth-Heinemann.

  • Serena, S., Marchall, F. R., Blanchet, D., & Vandecasteele, J. P. (1998). Intrinsic capacities of soil microflorae for gasoline degradation. Biodegradation, 9(5), 319–326. doi:10.1023/A:1008305906032.

    Article  Google Scholar 

  • Testa, S. M., & Winegardner, D. L. (2000). Restoration of contaminated aquifers petroleum hydrocarbons and organic compounds (2nd ed.). Chelsea: Lewis Publishers.

    Google Scholar 

  • Tirola, M. A., Männistö, M. K., Puhakka, J. A., & Kulomaa, M. S. (2002). Isolation and characterization of Novosphingobium sp. strain mt1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Applied and Environmental Microbiology, 68(1), 173–180. doi:10.1128/AEM.68.1.173-180.2002.

    Article  Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67(4), 503–549. doi:10.1128/MMBR.67.4.503-549.2003.

    Article  Google Scholar 

  • Venus, J., & Spyra, W. (2003). Biologische Behandlung von organisch kontaminierten Wässern. BTU Forum der Forschung, Jahrgang, 8(15), 103–106.

    Google Scholar 

  • Venus, J., Beitz, H., & Spyra, W. (2000). Microbial regeneration of the adsorbents for the cleaning of triazine-contaminated ground water. Chemical Engineering & Technology, 23(1), 26–29. doi:10.1002/(SICI)1521-4125(200001)23:1<26::AID-CEAT26>3.0.CO;2-Z.

    Article  CAS  Google Scholar 

  • Wilson, N. G., & Bradley, G. (1996). Enhanced degradation of petrol (Slovene diesel) in an aqueous system by immobilized Pseudomonas fluorescens. Journal of Applied Bacteriology, 80(1), 99–103.

    CAS  Google Scholar 

  • Winkelmann, K., Venus, J., & Spyra, W. (2003). Untersuchung eines kerosin-Grundwasserschadens unter dem Aspekt “Natural Attenuation” natürliche (mikrobiologische) Selbstreinigung. Forum der Forschung, Heft, 8(15), 107–111.

    Google Scholar 

  • Zhang, W., Bouwer, E., Wilson, L., & Durant, N. (1995). Biotransformation of aromatic hydrocarbons in subsurface biofilms. Water Science and Technology, 31(1), 1–14. doi:10.1016/0273-1223(95)00150-L.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The identification of the microorganisms was done by Dr. Mona Gouda in the cooperation between The Chair of Chemical Engineering and Hazardous Waste (Brandenburg Technical University of Cottbus) and Dr. Bär, Carl-Thiem-Klinikum. The authors would also like to thank CONACyT for support through scholarships. The authors thank Dr. Thomas Chapman, Ing., Walter Meyer, and Dr. Carlos Eduardo Frontana Vázquez for helpful comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Bravo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravo, V., Spyra, W. & Antaño-López, R. Biodegradation of High Concentrations of Benzene and Diesel in a Fixed-Film Reactor. Water Air Soil Pollut 204, 351–361 (2009). https://doi.org/10.1007/s11270-009-0049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0049-1

Keywords

Navigation