Water, Air, and Soil Pollution

, Volume 187, Issue 1–4, pp 89–108 | Cite as

Mercury and Organic Carbon Dynamics During Runoff Episodes from a Northeastern USA Watershed

  • P. F. Schuster
  • J. B. Shanley
  • M. Marvin-Dipasquale
  • M. M. Reddy
  • G. R. Aiken
  • D. A. Roth
  • H. E. Taylor
  • D. P. Krabbenhoft
  • J. F. DeWild


Mercury and organic carbon concentrations vary dynamically in streamwater at the Sleepers River Research Watershed in Vermont, USA. Total mercury (THg) concentrations ranged from 0.53 to 93.8 ng/L during a 3-year period of study. The highest mercury (Hg) concentrations occurred slightly before peak flows and were associated with the highest organic carbon (OC) concentrations. Dissolved Hg (DHg) was the dominant form in the upland catchments; particulate Hg (PHg) dominated in the lowland catchments. The concentration of hydrophobic acid (HPOA), the major component of dissolved organic carbon (DOC), explained 41–98% of the variability of DHg concentration while DOC flux explained 68–85% of the variability in DHg flux, indicating both quality and quantity of the DOC substantially influenced the transport and fate of DHg. Particulate organic carbon (POC) concentrations explained 50% of the PHg variability, indicating that POC is an important transport mechanism for PHg. Despite available sources of DHg and wetlands in the upland catchments, dissolved methylmercury (DmeHg) concentrations in streamwaters were below detection limit (0.04 ng/L). PHg and particulate methylmercury (PmeHg) had a strong positive correlation (r 2 = 0.84, p < 0.0001), suggesting a common source; likely in-stream or near-stream POC eroded or re-suspended during spring snowmelt and summer storms. Ratios of PmeHg to THg were low and fairly constant despite an apparent higher methylmercury (meHg) production potential in the summer. Methylmercury production in soils and stream sediments was below detection during snowmelt in April and highest in stream sediments (compared to forest and wetland soils) sampled in July. Using the watershed approach, the correlation of the percent of wetland cover to TmeHg concentrations in streamwater indicates that poorly drained wetland soils are a source of meHg and the relatively high concentrations found in stream surface sediments in July indicate these zones are a meHg sink.


Mercury Dissolved mercury Particulate mercury Methylmercury Dissolved methylmercury Particulate methylmercury Organic carbon Dissolved organic carbon Particulate organic carbon Hydrophobic organic acid Watershed Catchment Streamwater Snowmelt Sleepers River Vermont 



We would like to thank Doug Halm and Ann Chalmers of the USGS for their assistance in the field and Kenna Butler, Jennifer L. Agee, Le Kieu, and Hillary A. Harms for their analytical assistance. We would also like to thank Don Campbell and Steffanie Keefe of the USGS for their comments and suggestions.


  1. Aastrup, M., & Johnson, J. (1991). Occurrence and transport of mercury within a small catchment area. Water, Air and Soil Pollution, 56, 155–167.CrossRefGoogle Scholar
  2. Allan, C. J., Heyes, A., Roulet, N. T., St Louis, V. L., & Rudd, J. W. M. (2001). Spatial and temporal dynamics of mercury in Precambrian Shield upland runoff. Biogeochemistry, 52, 13–40.CrossRefGoogle Scholar
  3. Balogh, S. J., Meyer, M. L., Hansen, N. C., Moncrief, J. F., & Gupta, S. C. (2000). Transport of mercury from a cultivated field during snowmelt. Journal of Environmental Quality, 29(3), 871–874.Google Scholar
  4. Benoit, J. M., Gilmour, C. C., Heyes, A., & Miller, C. L. (2003). Geochemical and biological controls over methylmercury production and degradation in aquatic systems. ACS Symposium Series, 835, 262–297.CrossRefGoogle Scholar
  5. Benoit, J. M., Gilmour, C. C., & Mason, R. P. (2001b). Aspects of bioavailability of mercury for methylation pure cultures of Desulfobulbus propionicus (1pr3). Applied and Environmental Microbiology, 67(1), 51–58.CrossRefGoogle Scholar
  6. Benoit, J. M., Mason, R. P., Gilmour, C. C., & Aiken, G. R. (2001a). Constants for mercury binding by dissolved organic matter isolates from Florida Everglades. Geochimica et Cosmochimica Acta, 65(24), 4445–4451.CrossRefGoogle Scholar
  7. Bishop, K., Lee, Y. H., Pettersson, C., & Allard, B. (1995a). Methylmercury in runoff from the Svartberget Catchment in northern Sweden during a stormflow episode. Water, Air and Soil Pollution, 80, 1–4.Google Scholar
  8. Bishop, K., Lee, Y. H., Pettersson, C., & Allard, B. (1995b). Terrestrial sources of methylmercury in surface waters: The importance of the riparian zone on the Svartberget Catchment. Water, Air and Soil Pollution, 80, 1–4.Google Scholar
  9. Bishop, K., Lee, Y. H., Pettersson, C., & Allard, B. (1995c). Methylmercury output from the Svartberget Catchment in northern Sweden during spring flood. Water, Air and Soil Pollution, 80, 1–4.Google Scholar
  10. Cowell, S. E., Hurley, J. P., Shafer, M. M., & Hughes, P. E. (1995). Mercury partitioning and transport in Lake Michigan tributaries. International Association for Great lakes Research, 88 p.Google Scholar
  11. David, M. B., & Vance, G. F. (1991). Chemical character and origin of organic acids in streams and seepage lakes of central Maine. Biogeochemistry, 12, 17–41.CrossRefGoogle Scholar
  12. DiPasquale, M. C., Agee, J. L., Bouse, R. M., & Jaffe, B. E. (2003). Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California. Environmental Geology, 43, 260–267.Google Scholar
  13. Driscoll, C. T., Blette, V., Yan, C., Scholfield, C. L., Munson, R., & Holsapple, J. (1995). The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes. Water, Air and Soil Pollution, 80, 499–508.CrossRefGoogle Scholar
  14. Driscoll, C. T., Driscoll, K. M., Mitchell, M. J., & Raynal, D. J. (2003). Effects of acidic deposition on forest and aquatic ecosystems in New York State. Environmental Pollution, 123(3), 327–336.CrossRefGoogle Scholar
  15. Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., & Nater, E. A. (1998). The case for atmospheric mercury contamination in remote areas. Environmental Science & Technology, 32, 1–7.CrossRefGoogle Scholar
  16. Fleck, J. A. (1999) Mercury transport through northern forested watersheds: Dissolved and particulate pathways. M.S. Thesis, St. Paul, Minnesota: University of Minnesota.Google Scholar
  17. Gilmour, C. C., Riedel, G. S., Ederington, J. T., Bell, J. T., Benoit, J. M., Gill, G. A., et al. (1998). Methymercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry, 40, 327–345.CrossRefGoogle Scholar
  18. Grigal, D. F. (2002). Inputs and outputs of mercury from terrestrial watersheds: A review. Environmental Review, 10, 1–39.CrossRefGoogle Scholar
  19. Haitzer, M., Aiken, G. R., & Ryan, J. N. (2002). Binding of mercury (II) to dissolved organic matter. The role of the mercury-to-DOM concentration ratio. Environmental Science and Technology, 36, 3564–3570.CrossRefGoogle Scholar
  20. Hongve, D. (1999). Production of dissolved organic carbon in forested catchments. Journal of Hydrology, 224, 3–4.CrossRefGoogle Scholar
  21. Hornbeck, J. W., Bailey, S. W., Buso, D. C., & Shanley, J. B. (1997). Streamwater chemistry and nutrient budgets for forested watersheds in New England: Variability and management implications. Forest Ecology and Management, 93, 73–89.CrossRefGoogle Scholar
  22. Horowitz, A. J., Demas, C. R., Fitzgerald, K. K., Miller, T. L., & Ricket, D. A. (1994). U.S. Geological Survey protocol for the collection and processing of surface-water samples for the subsequent determination of inorganic constituents in filtered water. U.S. Geological Survey, OF 94-0539, 57 p.Google Scholar
  23. Hurley, J. P., Benoit, J. M., Babiarz, C. L., Shafer, M. M., Andren, A. W., Sullivan, J. R., et al. (1995). Influences of watershed characteristics on mercury levels in Wisconsin rivers. Environmental Science and Technology, 29, 1867–1875.CrossRefGoogle Scholar
  24. Hurley, J. P., Krabbenhoft, D. P., Cleckner, L. B., Olson, M. L., Aiken, G. R., & Rawlik, P. S., Jr. (1998). System controls on the aqueous distribution of mercury in the northern Florida Everglades. Biogeochemistry, 40, 293–310.CrossRefGoogle Scholar
  25. Keefe, C. W. (1994). The contribution of inorganic compounds to the particulate carbon, nitrogen and phosphorus in suspended matter and surface sediments of Chesapeake Bay. Estuaries, 17, 122–130.CrossRefGoogle Scholar
  26. Krabbenhoft, D. P., Benoit, J. M., Babiarz, C. L., Hurley, J. P., & Andren, A. W. (1995). Mercury cycling in the Allequash Creek Watershed, northern Wisconsin. Water, Air and Soil Pollution, 80, 425–433.CrossRefGoogle Scholar
  27. Lee, Y. H., Bishop, K., Pettersson, C., Iverfeldt, A., & Allard, B. (1995a). Subcatchment output of mercury and methylmercury at Svartberget in northern Sweden. Water, Air and Soil Pollution, 80, 1–4.Google Scholar
  28. Lee, Y. H., Bishop, K., Hultberg, H., Pettersson, C., Iverfeldt, A., & Allard, B. (1995b). Output of methylmercury from a catchment in northern Sweden. Water, Air and Soil Pollution, 80, 1–4.Google Scholar
  29. Lee, Y. H., Bishop, K. H., & Munthe, J. (2000). Do concepts about catchment cycling of methymercury and mercury in boreal catchments stand the test of time? Six years of atmospheric inputs and runoff export at Svartberget, northern Sweden. Science of the Total Environment, 260, 11–20.CrossRefGoogle Scholar
  30. Marvin-DiPasquale, M., & Agee, J. L. (2003). Microbial cycling in sediments of the San Francisco Bay-Delta. Estuaries, 26(6), 1517–1528.CrossRefGoogle Scholar
  31. Mattsson, T., Kortelainen, P., & David, M. B. (1998). Dissolved organic carbon fractions in Finnish and Maine (USA) lakes. Environment International, 24(5/6), 521–525.CrossRefGoogle Scholar
  32. Maurice-Bourgoin, L., Quemerais, B., Moreira-Turcq, P., & Seyler, P. (2003). Transport, distribution and speciation of mercury in the Amazon River at the confluence of black and white waters of the Negro and Solimos Rivers. Hydrological Processes, 17(7), 1405–1417.CrossRefGoogle Scholar
  33. McCall, R. B. (1986). Fundamental statistics for behavioral sciences, 4th ed., p. 439. Harcourt Brace Jovanovich, Inc, Publisher.Google Scholar
  34. McDonnell, J. J., McGlynn, B. L., & Kendall, K. (1998, April). The role of near-sream riparian zones in the hydrology of stepp upland catchments, Hydrology, Water Resources and Ecology in Headwaters. (Paper presented at the Proceedings of the HeadWater ’98 conference, Meran, Italy, IAHS Publ. no. 248).Google Scholar
  35. McGlynn, B. L., McDonnell, J. J., Shanley, J. B., & Kendall, C. (1999). Riparian zone flowpath dynamics during snowmelt in a small headwater catchment. Journal of Hydrology, 222, 75–92.CrossRefGoogle Scholar
  36. Moore, T. R. (2003). Dissolved organic carbon in a northern boreal landscape. Global Biogeochemical Cycles, 17(4), 8.CrossRefGoogle Scholar
  37. Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29, 543–566.CrossRefGoogle Scholar
  38. Munthe, J., Hultberg, H., Lee, Y. H., Parkman, H., Iverfeldt, A., & Renberg, I. (1995). Trends of mercury and methylmercury in deposition, run-off water and sediments in relation to experimental manipulations and acidification. Water, Air, and Soil Pollution, 85(2), 743–748.CrossRefGoogle Scholar
  39. Peters, N. E., Shanley, J. B., Aulenbach, B. T., Webb, R. M., Campbell, D. H., Hunt, R., et al. (2006). Water and solute mass balance of five small, relatively undisturbed watersheds in the U.S. Science of the Total Environment, 358, 221–242.CrossRefGoogle Scholar
  40. Rasmussen, P. E. (1995). Temporal variation of mercury in vegetation. Water, Air and Soil Pollution, 80, 1039–1042.CrossRefGoogle Scholar
  41. Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter: A review. Chemosphere, 55, 319–331.CrossRefGoogle Scholar
  42. Reddy, M. M., & Aiken, G. R. (2001). Fulvic acid–sulfide ion competition for mercury ion binding in the Florida Everglades. Water, Air, and Soil Pollution, 132, 89–104.CrossRefGoogle Scholar
  43. Rudd, J. W. M. (1995). Sources of methyl mercury to freshwater ecosystems: A review. Water, Air and Soil Pollution, 80, 1–4.CrossRefGoogle Scholar
  44. Sakamoto, H. E., Cleckner, L. B., Hurley, J. P., Rolfhus, K. R., Keeler, G. J., Armstrong, D. E., et al. (2001, June). Atmospheric methyl mercury loading in the Lake Superior Basin, (Paper presented at the 44th Conference on Great Lakes Research, Great Lakes Science: Making it Relevant), 116–117.Google Scholar
  45. Scherbatskoy, T., Shanley, J. B., & Keeler, G. J. (1998). Factors controlling mercury transport in an upland forested catchment. Water, Air, and Soil Pollution, 105, 427–438.CrossRefGoogle Scholar
  46. Schwesig, D., Ilgen, G., & Matzner, E. (1999). Mercury and methymercury in upland and wetland acid forest soils of a watershed in NE-Bavaria, Germany. Water, Air, Soil Pollution, 113, 141–154.CrossRefGoogle Scholar
  47. Shanley, J. B., & Chalmers, A. (1999). The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont. Hydrological Processes, 13, 12–13.CrossRefGoogle Scholar
  48. Shanley, J. B., Donlon, A. F., Scherbatskoy, T., & Keeler, G. R. (1999) Mercury cycling and transport in the Lake Champlain Basin, in T.O. Manley, and P.L. Manley, eds., Lake Champlain in transition: From research toward restoration: American Geophysical Union. Water Science and Application, 1, 227–299Google Scholar
  49. Shanley, J. B., Kendall, C., Albert, M. R., & Hardy, J. P. (1995). Chemical isotopic evolution of a layered eastern U.S. snowpack and its relation to stream-water composition. Biogeochemistry of Seasonally Snow-Covered Catchments, 228, 329–338.Google Scholar
  50. Shanley, J. B., Schuster, P. F., Reddy, M. M., Roth, D. A., Taylor, H. E., & Aiken, G. R. (2002). Mercury on the move during snowmelt in Vermont. EOS Transactions, 83(5), 45–48.CrossRefGoogle Scholar
  51. Skyllberg, U., Quin, J., French, W., Xia, K., & Bleam, W. F. (2003). Distribution of mercury, methymercury and organic sulfur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry, 64, 53–76.CrossRefGoogle Scholar
  52. Skyllberg, U., Xia, K., Bloom, P., Nater, E. A., & Bleam, W. F. (2000). Binding of mercury(II) to reduce sulfur in soil organic matter along upland peat soil transects. Journal of Environmental Quality, 29(3), 855–865.CrossRefGoogle Scholar
  53. Ussiri, D. A., & Johnson, C. E. (2004). Sorption of organic carbon fractions by Spodosol mineral horizons. Soil Science Society of America Journal, 68(1), 253–262.CrossRefGoogle Scholar
  54. USEPA (1994). Method 7471A, Revision 1: Mercury in solid or semisolid waste: EPA SW-846, 7 p.Google Scholar
  55. USEPA (1997). Method No. 440.0 Determination of carbon and nitrogen in sediments and particulates of estuarine/coastal waters using elemental analysis. Cincinnati, Ohio, September 1997.Google Scholar
  56. Weishaar, J. L., Aiken, G. R., Bergamschi, B. A., Fram, M. S., Fujii, R., & Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science and Technology, 37, 4702–4708.CrossRefGoogle Scholar
  57. Wilde, F. D., Radtke, D. B., Gibs, J., Iwatsubo, R. T. (Eds.) (1998). National field manual for the collection of water quality data (In Techniques of Water-Resources Investigations, Book 9, handbooks of water resources investigations. Washington D.C.: U.S Geological Survey).Google Scholar

Further Reading

  1. Aiken, G. R., McKnight, D. M., Thorn, K. A., & Thurman, E. M. (1992). Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Organic Geochemistry, 18, 567–573.CrossRefGoogle Scholar
  2. Babiarz, C. L., Hoffmann, S. R., Shafer, M. M., Hurley, J. P., Andren, A. W., & Armstrong, D. E. (2000). A critical evaluation of tangential-flow ultrafiltration for trace metal studies in freshwater systems. 2. Total mercury and methylmercury. Envrionmental Science and Technology, 34, 3428–3434.CrossRefGoogle Scholar
  3. Chin, Y. P., Aiken, G., & Oloughlin, E. (1994). Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Envrionmental Science and Technology, 28, 1853–1858.CrossRefGoogle Scholar
  4. DeWild, J. F., Olson, M. L., & Olund, S. D. (2002). Determination of methyl mercury by aqueous phase ethylation, followed by gas chromatographic separation with cold vapor atomic flourescence detection. U.S. Geological Survey Open-File Report 01-445, 14.Google Scholar
  5. DeWild, J. F., Olund, S. D., Olson, M. L., & Tate, M. T. (2004). Methods for the preparation and analysis of solids and suspended solids for methymercury. U.S. Geological Survey Techniques and Methods, Chapter A7, Book 5, 21.Google Scholar
  6. Fishman, M. J., & Friedman, L. C. (1989). Methods for determination of inorganic substances in water and fluvial sediments, Techniques of Water-Resources Investigations, Chapter A1, Book 5, handbooks of water resources investigations (p. 466). Washington D.C.: U.S Geological Survey.Google Scholar
  7. Kelly, T., & Taylor, H. E. (1996). Concentrations and loads of selected trace elements and other constituents in the Rio Grande in the vicinity of Albuquerque, New Mexico, 1994. U.S. Geological Survey Open-File Report 96-0126, 45.Google Scholar
  8. Marvin-DiPasquale, M. C., Agee, J. L., Bouse, R. M., & Jaffe, B. E. (2003). Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California. Environmental Geology, 43, 260–267.Google Scholar
  9. Olson, M. L., & DeWild, J. F. (1999) Techniques for the collection and species-specific analysis of low levels of mercury in water, sediment, and biota: Water Resources Investigations 99-4018-B, 11.Google Scholar
  10. Olund, S. D., DeWild, J. F., Olson, M. L., & Tate, M. T. (2004). Methods for the preparation and analysis of solids and suspended solids for total mercury. U.S. Geological Survey Techniques and Methods, Chapter A8, Book 5, 23.Google Scholar
  11. Roth, D. A. (1994). Ultratrace analysis of mercury and its distribution in some natural waters in the United States. Dissertation. Ft. Collins: Colorado State University.Google Scholar
  12. USEPA (1996). Method No. 1631, Mercury in Water/Oxidation, Purge and Trap, CFAFS, 821/R-96-012.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • P. F. Schuster
    • 1
  • J. B. Shanley
    • 2
  • M. Marvin-Dipasquale
    • 3
  • M. M. Reddy
    • 1
  • G. R. Aiken
    • 1
  • D. A. Roth
    • 1
  • H. E. Taylor
    • 1
  • D. P. Krabbenhoft
    • 4
  • J. F. DeWild
    • 4
  1. 1.U.S. Geological SurveyBoulderUSA
  2. 2.U.S. Geological SurveyMontpelierUSA
  3. 3.U.S. Geological SurveyMenlo ParkUSA
  4. 4.U.S. Geological SurveyMiddletonUSA

Personalised recommendations