Optimization of the Discharge and Energy Dissipation for a Real Hydro-Junction Project Based upon SPH Simulations

Abstract

Flows in discharge and energy dissipation buildings generally carry a considerable amount of energy. Therefore, it is important to optimize the discharge and energy dissipation to eliminate the redundant energy as much as possible for the safety of the hydro-junction project and the downstream area. In this paper, a smoothed particle hydrodynamics (SPH) model is applied to optimize the discharge and energy dissipation related to hydraulic jumps for a large-scale real hydro-junction project. The capability of the model in resolving hydraulic jumps is validated by comparing the model results with experimental data. Then, the model is applied to optimize the real hydro-junction project, which requires a sizeable computational effort. The optimization is based on comparisons of the velocity field, the location of the jump toe and the energy dissipation rate between two different schemes for the stilling basin. It is found that the two-stage stilling basin is more effective for energy dissipation than the one-stage stilling basin with the same length. Therefore, two-stage energy dissipation should be adopted for discharge and energy dissipation buildings for similar hydro-junction projects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Altomare C, Crespo AJC, Domínguez JM, Gómez-Gesteira M, Suzuki T, Verwaest T (2015) Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures. Coast Eng 96:1–12. https://doi.org/10.1016/j.coastaleng.2014.11.001

    Article  Google Scholar 

  2. Aydin MC, Emiroglu ME (2013) Determination of capacity of labyrinth side weir by CFD. Flow Meas Instrum 29:1–8. https://doi.org/10.1016/j.flowmeasinst.2012.09.008

    Article  Google Scholar 

  3. Bakhtyar R, Barry DA (2009) Optimization of cascade stilling basins using GA and PSO approaches. J Hydroinf 11:119–132. https://doi.org/10.2166/hydro.2009.046

    Article  Google Scholar 

  4. Bakhtyar R, Mousavi SJ, Afshar A (2007) Dynamic programming approach to optimal design of cascade stilling basins. J Hydraul Eng 133:949–954. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(949)

    Article  Google Scholar 

  5. Barreiro A, Crespo AJC, Dominguez JM, Garcia-Feal O, Zabala I, Gomez-Gesteira M (2016) Quasi-static mooring solver implemented in SPH. J Ocean Eng Mar Energy 2:381–396. https://doi.org/10.1007/s40722-016-0061-7

    Article  Google Scholar 

  6. Benz W, Asphaug E (1995) Simulations of brittle solids using smooth particle hydrodynamics. Comput Phys Commun 87:253–265. https://doi.org/10.1016/0010-4655(94)00176-3

    Article  Google Scholar 

  7. Canelas RB, Domínguez JM, Crespo AJC, Gómez-Gesteira M, Ferreira RML (2015) A smooth particle hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics. Int J Numer Methods Fluids 78:581–593. https://doi.org/10.1002/fld.4031

    Article  Google Scholar 

  8. Chern M-J, Syamsuri S (2013) Effect of corrugated bed on hydraulic jump characteristic using SPH method. J Hydraul Eng 139:221–232. https://doi.org/10.1061/(asce)hy.1943-7900.0000618

    Article  Google Scholar 

  9. Crespo AJC, Gómez-Gesteira M, Dalrymple RA (2008) Modeling dam break behavior over a wet bed by a SPH technique. J Waterw Port, Coastal, Ocean Eng 134:313–320. https://doi.org/10.1061/(asce)0733-950x(2008)134:6(313)

  10. Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216. https://doi.org/10.1016/j.cpc.2014.10.004

    Article  Google Scholar 

  11. Dehdar-Behbahani S, Parsaie A (2016) Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran. Alexandria Eng J 55:467–473. https://doi.org/10.1016/j.aej.2016.01.006

    Article  Google Scholar 

  12. Gu S, Ren L, Wang X, Xie H, Huang Y, Wei J, Shao S (2017) SPhysics simulation of experimental spillway hydraulics. Water (Switzerland) 9:1–19. https://doi.org/10.3390/w9120973

    Article  Google Scholar 

  13. Jonsson P, Andreasson P, Hellström JGI, Jonsén P, Staffan Lundström T (2016a) Smoothed particle hydrodynamic simulation of hydraulic jump using periodic open boundaries. Appl Math Model 40:8391–8405. https://doi.org/10.1016/j.apm.2016.04.028

    Article  Google Scholar 

  14. Jonsson P, Jonsén P, Andreasson P, Lundström TS, Hellström JGI (2016b) Smoothed particle hydrodynamic Modelling of hydraulic jumps: bulk parameters and free surface fluctuations. Engineering 08:386–402. https://doi.org/10.4236/eng.2016.86036

    Article  Google Scholar 

  15. Li LX, Liao HS, Liu D, Jiang SY (2015) Experimental investigation of the optimization of stilling basin with shallow-water cushion used for low Froude number energy dissipation. J Hydrodyn 27:522–529. https://doi.org/10.1016/S1001-6058(15)60512-1

    Article  Google Scholar 

  16. López D, Marivela R, Garrote L (2010) Smoothed particle hydrodynamics model applied to hydraulic structures: A hydraulic jump test case. J Hydraul Res 48:142–158. https://doi.org/10.1080/00221686.2010.9641255

    Article  Google Scholar 

  17. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406. https://doi.org/10.1006/jcph.1994.1034

    Article  Google Scholar 

  18. Nikseresht AH, Talebbeydokhti N, Rezaei MJ (2013) Numerical simulation of two-phase flow on step-pool spillways. Sci Iran 20:222–230. https://doi.org/10.1016/j.scient.2012.11.013

    Article  Google Scholar 

  19. Pringgana G, Cunningham LS, Rogers BD (2016) Modelling of tsunami-induced bore and structure interaction. Proc Inst Civ Eng - Eng Comput Mech 169:109–125. https://doi.org/10.1680/jencm.15.00020

    Article  Google Scholar 

  20. Ribeiro ML, Boillat J-L, Schleiss A, et al (2007) Rehabilitation of St-Marc dam experimental optimization of a piano key weir. Proc 32nd Congr IAHR

  21. Schwindt S, Cesare GD, Boillat JL, Schleiss A j. (2016) Physical modelling optimization of a filter check dam in Switzerland. Hazard Risk Mitig:828–836

  22. Shi Y, Wei J, Li S, Song P, Zhang B (2019) A Meshless WCSPH boundary treatment for Open-Channel flow over small-scale rough bed. Math Probl Eng 2019:1–17. https://doi.org/10.1155/2019/1573049

    Article  Google Scholar 

  23. St-Germain P, Nistor I, Townsend R, Shibayama T (2014) Smoothed-particle hydrodynamics numerical modeling of structures impacted by tsunami bores. J Waterw Port, Coastal, Ocean Eng 140:66–81. https://doi.org/10.1061/(asce)ww.1943-5460.0000225

    Article  Google Scholar 

  24. Suprapto M (2013) Increase spillway capacity using labyrinth weir. Procedia Eng 54:440–446. https://doi.org/10.1016/j.proeng.2013.03.039

    Article  Google Scholar 

  25. Tabbara M, Chatila J, Awwad R (2005) Computational simulation of flow over stepped spillways. Comput Struct 83:2215–2224. https://doi.org/10.1016/j.compstruc.2005.04.005

    Article  Google Scholar 

  26. Zhan J, Zhang J, Gong Y (2016) Numerical investigation of air-entrainment in skimming flow over stepped spillways. Theor Appl Mech Lett 6:139–142. https://doi.org/10.1016/j.taml.2016.03.003

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. DUT18ZD401).

Author information

Affiliations

Authors

Contributions

Conceptualization: Congfang Ai; Methodology: Jinbo Lin; Funding acquisition: Congfang Ai; Formal analysis and investigation: Jinbo Lin; Writing – original draft preparation: Jinbo Lin, Congfang Ai; Writing – review and editing: Weiye Ding, Sheng Jin.

Corresponding author

Correspondence to Congfang Ai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Ai, C., Jin, S. et al. Optimization of the Discharge and Energy Dissipation for a Real Hydro-Junction Project Based upon SPH Simulations. Water Resour Manage (2020). https://doi.org/10.1007/s11269-020-02570-z

Download citation

Keywords

  • Optimization
  • Hydro-junction project
  • Energy dissipation
  • SPH
  • Hydraulic jumps