Slackwater Sediments Record the Increase in Sub-daily Rain Flood due to Climate Change in a European Mediterranean Catchment

Abstract

In this work we propose an original method to determine the magnitude of the discharge, the intensity of the precipitation and the duration of short-rain floods in small torrential basins (< 2000 km2), extending our earlier approach for long-rain floods in larger basins (Water 2016, 8, 526; Remote Sens. 2017, 9, 727). The studied areas are located in ungauged catchments with high erosion rates where torrents deposit slackwater sediments near the outlet of the basins. Such deposits and erosive morphologies allow us to analyse sub-daily extreme hydrological events by combining standard techniques in paleohydrology, the kinematic wave method and remote-sensed paleostage indicators. The formulation was correctly verified in extreme events through reliable gauge measurements and a high-resolution distributed hydrological model showing the accuracy of our calculations (10% ≤relative error ≤ 22%). In catchments of the European Mediterranean region where the frequency and magnitude of short-rain floods are increasing (e.g. the Guadalquivir Basin), the main hydrological variables can thus be quantified post-event using the proposed approach. The outputs may serve to construct a new database for this kind of events complementary to the existing daily database for long-rain floods (> 24 h). The need is evident for safety designs of civil infrastructures and flood risk mitigation strategies in the current climate change scenario.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alfieri L, Thielen J (2015) A European precipitation index for extreme rain-storm and flash flood early warning. Meteorol Appl 22(1):3–13. https://doi.org/10.1002/met.1328

    Article  Google Scholar 

  2. Alfieri L, Berenguer M, Knechtl V, Liechti K, Sempere-Torres D, Zappa M (2016) Flash flood forecasting based on rainfall thresholds. In: Duan Q, Pappenberger F, Thielen J, Wood A, Cloke HL, Schaake JC eds Handbook of Hydrometeorological Ensemble Forecasting, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–38, https://doi.org/10.1007/978-3-642-40457-3_49-1

  3. Baker V (2008) Paleoflood hydrology: Origin, progress, prospects. Geomorphology 101(1-2):1–13. https://doi.org/10.1016/j.geomorph.2008.05.016

    Article  Google Scholar 

  4. Bates P, De Roo A (2000) A simple raster-based model for flood inundation simulation. J Hydrol 236(1-2):54–77. https://doi.org/10.1016/S0022-1694(00)00278-X

    Article  Google Scholar 

  5. Bellos V, Papageorgaki I, Kourtis I, Vangelis H, Kalogiros I, Tsakiris G (2020) Reconstruction of a flash flood event using a 2D hydrodynamic model under spatial and temporal variability of storm. https://doi.org/10.1007/s11069-020-03891-3

  6. Bellos V, Tsakiris G (2016) A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques. J Hydrol 540:331–339. https://doi.org/10.1016/j.jhydrol.2016.06.040

    Article  Google Scholar 

  7. Bodoque J, Díez-herrero A, Martín-duque J, Rubiales J, Godfrey A, Pedraza J, Carrasco R, Sanz M (2005) Sheet erosion rates determined by using dendrogeomorphological analysis of exposed tree roots:, Two examples from Central Spain. Catena 64(1):81–102. https://doi.org/10.1016/j.catena.2005.08.002

    Article  Google Scholar 

  8. Bohorquez P (2016) Paleohydraulic reconstruction of modern large floods at subcritical speed in a confined valley: Proof of concept. Water 8(12):567. https://doi.org/10.3390/w8120567

    Article  Google Scholar 

  9. Bohorquez P, Darby S (2008) The use of one- and two-dimensional hydraulic modelling to reconstruct a glacial outburst flood in a steep Alpine valley. J Hydrol 361 (3-4):240–261. https://doi.org/10.1016/j.jhydrol.2008.07.043

    Article  Google Scholar 

  10. Bohorquez P, del Moral-Erencia J (2017) 100 years of competition between reduction in channel capacity and streamflow during floods in the Guadalquivir River Southern Spain, vol 9. https://doi.org/10.3390/rs9070727

  11. Brutsaert W (2005) Hydrology: An Introduction. Cambridge University Press, https://doi.org/10.1017/CBO9780511808470

  12. Carling PA, Herget J, Lanz JK, Richardson K, Pacifici A (2009) Channel-scale erosional bedforms in bedrock and in loose granular material: character, processes and implications. In: Burr D M, Carling P A, Baker V R (eds) Megaflooding on earth and mars. https://doi.org/10.1017/CBO9780511635632.002. Cambridge University Press, Cambridge, pp 13–32

  13. CEDEX (2014) Mapa de Caudales Máximos. Memoria Técnica. Dirección General del Agua. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente NIPO:770-11-273-7

  14. Díez-Herrero A, Laín-Huerta L, Llorente-Isidro M (2008) Mapas de peligrosidad por avenidas e inundaciones. Guía metodológica para su elaboración. No. 1 in Riesgos geológicos /Geotecnia, Publicaciones del Instituto Geológico y Minero de España, Madrid, ISBN: 978-84-7840-770-5

  15. Dottori F, Szewczyk W, Ciscar JC, Zhao F, Alfieri L, Hirabayashi Y, Bianchi A, Mongelli I, Frieler K, Betts R, Feyen L (2018) Increased human and economic losses from river flooding with anthropogenic warming. Nat Clim Chang 8(9):781–786. https://doi.org/10.1038/s41558-018-0257-z

    Article  Google Scholar 

  16. EEA (2017) Climate change, impacts and vulnerability in Europe 2016: An indicator-based report. Publications Office of the European Union, vol 1. https://doi.org/10.2800/534806

  17. García-Feal O, González-Cao J, Gómez-Gesteira M, Cea L, Domínguez J, Formella A (2018) An accelerated tool for flood modelling based on Iber. Water 10(10):1459. https://doi.org/10.3390/w10101459

    Article  Google Scholar 

  18. IPCC (2013) Climate Change 2013: The Physical Science Basis. In: Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, ISBN: 978-92-9169-138-8

  19. Jacobson RB, O’Connor JE, Oguchim T (2016) Surficial geological tools in fluvial geomorphology. In: Tools in fluvial geomorphology John Wiley & Sons Ltd 11–39 https://doi.org/10.1002/9781118648551.ch2

  20. Mays LW (2010) Water Resources Engineering. In: 2nd edn. John Wiley & Sons, Ltd, ISBN: 978-0-470-46064-1

  21. Merz R, Blöschl G (2003) A process typology of regional floods. Water Resour Res 39(12):SWC51–SWC520. https://doi.org/10.1029/2002WR001952

    Article  Google Scholar 

  22. Naylor L, Spencer T, Lane S, Darby S, Magilligan F, Macklin M, Möller I (2017) Stormy geomorphology: geomorphic contributions in an age of climate extremes. Earth Surf Process Landf 42(1):166–190. https://doi.org/10.1002/esp.4062

    Article  Google Scholar 

  23. Peral-García C, Fernández-Victorio BN, P RC (2017) Serie de precipitación diaria en rejilla con fines climáticos. Agencia Estatal de Meteorología, Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, NIPO: 014-17-009-5

  24. Veilleux AG, Cohn TA, Flynn KM, Mason RR Jr, Hummel PR (2014) Estimating magnitude and frequency of floods using the peak FQ 7.0 program Report 2013-3108 Reston VA. https://doi.org/10.3133/fs20133108

  25. Walder JS (2015) Dimensionless erosion laws for cohesive sediment. J Hydraul Eng 142(2):04015047. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001068

    Article  Google Scholar 

  26. Wood M, Hostache R, Neal J, Wagener T, Giustarini L, Chini M, Corato G, Matgen P, Bates P (2016) Calibration of channel depth and friction parameters in the LISFLOOD- FP hydraulic model using medium-resolution SAR data and identifiability techniques. Hydrol Earth Syst Sci 20(12):4983–4997. https://doi.org/10.5194/hess-20-4983-2016

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science, Innovation and Universities (MICINN/FEDER, UE) under Grant SEDRETO CGL2015-70736-R. J.D.d.M.E. was supported by the PhD scholarship BES-2016-079117 (MINECO/FSE, UE) from the Spanish National Programme for the Promotion of Talent and its Employability (call 2016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Bohorquez.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moral-Erencia, J.D., Bohorquez, P., Jimenez-Ruiz, P.J. et al. Slackwater Sediments Record the Increase in Sub-daily Rain Flood due to Climate Change in a European Mediterranean Catchment. Water Resour Manage (2020). https://doi.org/10.1007/s11269-020-02563-y

Download citation

Keywords

  • Short-rain flood
  • Satellite imagery
  • Flood monitoring
  • Paleohydrology
  • Climate change
  • Guadalquivir basin