Skip to main content
Log in

Drinking Water Source Monitoring Using Early Warning Systems Based on Data Mining Techniques

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Improving drinking water source monitoring is crucial for efficiently managing the drinking water treatment process and ensuring the delivery of safe water. Data mining techniques could prove useful to help forecast source water quality. In this study, two approaches were used to forecast turbidity mean levels and peaks in the main drinking water source of the city of Québec, Canada. Trend analysis was applied for the prediction of significant turbidity events (>99th percentile of data distribution). Artificial neural networks using antecedent moisture conditions as input parameters (all turbidity peaks) served to forecast daily turbidity time series. Results show that trend analyses help anticipate the timing of turbidity peaks ― with differences between the cold season (fall and winter) and the warm season (spring and summer) and mean anticipations between 45 and 85 min and 25 and 45 min, respectively ― and the magnitude of the peak. The artificial neural network model was developed and proven capable of predicting the mean levels of turbidity at the drinking water intake of the investigated catchment. These early warning systems could be applied to source water system forecasting and provide a framework for adjusting drinking water treatment operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgments

This study was supported by MITACS. We acknowledge Francois Proulx from the City of Québec for providing the rainfall data, and Christian Pelletier and Louis Collin for providing us access to turbidity data from the Québec DWTP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ianis Delpla.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, and in the decision to publish the results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delpla, I., Florea, M. & Rodriguez, M.J. Drinking Water Source Monitoring Using Early Warning Systems Based on Data Mining Techniques. Water Resour Manage 33, 129–140 (2019). https://doi.org/10.1007/s11269-018-2092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-018-2092-4

Keywords

Navigation