Skip to main content
Log in

The Effect of Temperature Adjustment on Reference Evapotranspiration and Reconnaissance Drought Index (RDI) in Iran

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The reference evapotranspiration (ET0) is necessary to calculate Reconnaissance Drought Index (RDI). To estimate ET0, FAO56 Penman-Monteith method which needs reference stations data is commonly used. Most of the meteorological stations in Iran are classified as non-reference satations and The use of their data in ET0 calculation can affect the RDI. The objective of the present study is to evaluate the effect of temperature adjustment based on the reference condition on ET0 and RDI values in non-reference stations of Iran. For this purpose, the meteorological data, recorded during 1960–2014 in 27 non-reference stations located in arid and semi-arid regions, were used. First, the values of ET0 were determined using observed values of temperature. Using these values, RDI were computed by Log-Normal and Gamma distributions at annual and 6-month scales. Then the values of minimum, maximum and dew point temperatures were adjusted on the basis of the reference condition. The values of ET0 and consequently RDI were calculated using adjusted data. On the basis of obtained results, at annual and 6-month scales, using observed values of temperature instead of adjusted values in non-reference stations cause to overestimate the value of ET0. Also, using observed data with no adjustment can change the drought class which was determined on the basis of RDI. According to these results, temperature adjustment based on reference condition can change the values of ET0 and RDI which was calculated by using Log-Normal or Gamma distributions at annual and 6-month scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56. FAO, Rome

  • Allen RG, Brockway CE, Wright JL (1983) Weather station siting and consumptive use estimates. J. Water Resour. Plan. Manag 109(2):134–146

    Article  Google Scholar 

  • Asadi A, Vahdat SF (2013) The efficiency of meteorological drought indices for drought monitoring and evaluating in Kohgilouye and Boyerahmad province, Iran. Int J Mod Eng Res 3(4):2407–2411

    Google Scholar 

  • Asadi Zarch MA, Malekinezhad H, Mobin MH, Dastorani MT, Kousari MR (2011b) Drought monitoring by Reconnaissance Drought Index (RDI) in Iran. J. Water Resour. Manag 25:3485–3504. doi:10.1007/s11269-011-9867-1

    Article  Google Scholar 

  • Baltas E (2007) Spatial distribution of climatic indices in northern Greece. J Meteorol Appl 14:69–78. doi:10.1002/met.7

    Article  Google Scholar 

  • Bhalme HN, Mooley DA (1980) Large-scale drought/floods and monsoon circulation. Mon Weather Rev 108:1197–1211

    Article  Google Scholar 

  • Burman RD, Wright JL, Jensen ME (1975) Change in climate and estimate evaporation across a large irrigation area in Idaho. Trans ASAE 18(6):1089–1093. doi:10.13031/2013.36745

    Article  Google Scholar 

  • Dahal P, Shrestha NS, Shrestha ML, Krakauer NY, Panthi J, Pradhanang SM, Jha A, Lakhankar T (2016) Drought risk assessment in central Nepal: temporal and spatial analysis. J Nat Hazards 80:1913–1932. doi:10.1007/s11069-015-2055-5

    Article  Google Scholar 

  • Dastorani MT, Massah Bavani AR, Poormohammadi S, Rahimian MH (2011) Assessment of potential climate change impacts on drought indicators (Case study: Yazd station, central Iran). J Desert 16:159–167

    Google Scholar 

  • Djaman K, Balde AB, Sow A, Muller B, Irmak S, N’Diaye MK, Manneh B, Moukoumbi YD, Futakuchi K, Saito K (2015) Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. Hydrol: Reg Stud 3:139–159. doi:10.1016/j.ejrh.2015.02.002

    Google Scholar 

  • Guttmann NB (1998) Comparing the Palmer drought index and the standardized precipitation index. J Am Water Resour Assoc 34:113–121. doi:10.1111/j.1752-1688.1998.tb05964.x

    Article  Google Scholar 

  • Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35:311–322. doi:10.1111/j.1752-1688.1999.tb03592.x

    Article  Google Scholar 

  • Hao Z, AghaKouchak A (2013) Multivariate Standardized Drought Index: Aparametric multi-index model. J Adv Water Resour 57:12–18. doi:10.1016/j.advwatres.2013.03.009

    Article  Google Scholar 

  • Karimpour Reyhan M, Esmaeilpour Y, Malekian A, Mashhadi N, Kamali N (2009) Spatio-temporal analysis of drought vulnerability using the standardized precipitation index (Case study: Semnan province, Iran). J Desert 14:133–140

    Google Scholar 

  • Khalili D, Farnoud T, Jamshidi H, Kamgar-Haghighi AA, Zand-Parsa S (2011b) Comparability analyses of the SPI and RDI meteorological drought indices in different climatic zones. J. Water Resour. Manag 25:1737–1757. doi:10.1007/s11269-010-9772-z

    Article  Google Scholar 

  • Khanmohammadi N, Rezaie H, Montaseri M, Behmanesh J (2017) The application of multiple linear regression method in reference evapotranspiration trend calculation. J Stoch Environ Res Risk Assess. doi:10.1007/s00477-017-1378-z

  • Lana X, Serra C, Burgueno A (2001) Patterns of monthly rainfall shortage and excess in terms of the standardized precipitation index. Int J Climatol 21:1669–1691. doi:10.1002/joc.697

    Article  Google Scholar 

  • Mavrakis A, Papavasileiou H (2013) NDVI and E. de Martonne indices in an environmentally stressed area (Thriasio Plain-Greece). J Proedia Technol 8:477–481. doi:10.1016/j.protcy.2013.11.062

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. 8th Conference on Applied Climatology, Anaheim, 179–184

  • Mendicino G, Senatore A, Versace P (2008) A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a mediterranean climate. J Hydrol 357:282–302. doi:10.1016/j.jhydrol.2008.05.005

    Article  Google Scholar 

  • Mohammed R, Scholz M (2017b) Impact of evapotranspiration formulations at various elevations on the Reconnaissance Drought Index. J. Water Resour. Manag 31:531–548. doi:10.1007/s11269-016-1546-9

    Article  Google Scholar 

  • Mosaedi A, Zare Abyaneh H, Ghabaei Sough M, Samadi SZ (2015b) Quantifying changes in reconnaissance drought index using equiprobability transformation function. J. Water Resour. Manag 29:2451–2469. doi:10.1007/s11269-015-0944-8

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought. Research paper no. 45, U.S. Department of Commerce Weather Bureau, Washington, DC

  • Shamsnia SA (2014) Comparison of Reconnaissance Drought Index (RDI) and Standardized Precipitation Index (SPI) for drought monitoring in arid and semiarid regions. Ind J Fundam Appl Life Sci 4(3):39–44

    Google Scholar 

  • Sonmez FK, Komuscu AU, Erkan A, Turgu E (2005) An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation index. J Nat Hazards 35:243–264. doi:10.1007/s11069-004-5704-7

    Article  Google Scholar 

  • Soleimani Sardou F, Bahremand A (2014) Hydrological drought analysis using SDI index in Halilrud basin of Iran. J Environ Resour Res 2:47–56. doi:10.22069/ijerr.2014.1678

    Google Scholar 

  • Tabari H, Grismer ME, Trajkovic S (2013) Comparative analysis of 31 reference evapotranspiration methods under humid conditions. J Irrig Sci 31:107–117. doi:10.1007/s00271-011-0295-z

    Article  Google Scholar 

  • Temesgen B (1996) Temperature and humidity data correction for calculating reference evapotranspiration at nonreference weather stations. Utah state university, Logan

  • Tigkas D (2008) Drought characterisation and monitoring in regions of Greece. J Eur Water 23(24):29–39

    Google Scholar 

  • Tigkas D, Vangelis H, Tsakiris G (2013) The RDI as a composite climatic index. J Eur Water 41:17–22

    Google Scholar 

  • Tsakiris G, Vangelis H (2005) Establishing a drought index incorporating evapotranspiration. J Eur Water 9(10):3–11

    Google Scholar 

  • Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the reconnaissance drought index (RDI). J Water Resour Manage 21:821–833. doi:10.1007/s11269-006-9105-4

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multi scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718. doi:10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Vrochidou AEK, Tsanis IK (2012) Assessing precipitation distribution impacts on droughts on the island of Crete. J Nat Hazards Earth Syst Sci 12:1159–1171. doi:10.5194/nhess-12-1159-2012

    Article  Google Scholar 

  • Wang Y, Li J, Feng P, Hu R (2015) A time-dependent drought index for non-stationary precipitation series. J Water Resour Manage 29:5631–5647. doi:10.1007/s11269-015-1138-0

    Article  Google Scholar 

  • Wells N, Goddard S, Hayes MJ (2004) A self-calibrating Palmer drought severity index. J Clim 17:2335–2351

    Article  Google Scholar 

  • Wu H, Hayes MJ (2001) An evaluation of the standardized precipitation index, the China index and statistical Z-Score. Int J Climatol 21:745–758. doi:10.1002/joc.658

    Article  Google Scholar 

  • Wu H, Hayes MJ, Wilhite DA, Svoboda MD (2005) The effect of the length of record on the standardized precipitation index calculation. Int J Climatol 25:505–520. doi:10.1002/joc.1142

    Article  Google Scholar 

  • Wu H, Svoboda MD, Hayes MJ, Wilhite DA, Wen F (2007) Appropriate application of the standardized precipitation index in arid locations and dry seasons. Int J Climatol 27:65–79. doi:10.1002/joc.1371

    Article  Google Scholar 

  • Zehtabian G, Karimi K, Nakhaee nezhad fard S, Mirdashtvan M, Khosravi H (2013) Comparability analyses of the SPI and RDI meteorological drought indices in South Khorasan province in Iran. Int J Adv Biol Biom Res 1(9):981–992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Behmanesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanmohammadi, N., Rezaie, H., Montaseri, M. et al. The Effect of Temperature Adjustment on Reference Evapotranspiration and Reconnaissance Drought Index (RDI) in Iran. Water Resour Manage 31, 5001–5017 (2017). https://doi.org/10.1007/s11269-017-1793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-017-1793-4

Keywords

Navigation