Water Resources Management

, Volume 31, Issue 15, pp 4821–4833 | Cite as

Leakage Detection Using Smart Water System: Combination of Water Balance and Automated Minimum Night Flow

Article

Abstract

This paper presents a methodology for the application of the Smart Water technology to detect water leakage. This methodology consists in the use of the traditional water balance method together with the minimum night flow approach. This procedure has been applied to a large-scale pilot project conducted at the Scientific Campus of the University of Lille, which is the size of a small town. The water network of the campus is monitored by a set of sensors that record and transmit, in real-time, the hydraulic parameters of the water system. Analysis of real-time data has allowed the verification of water balance and the estimation of water losses level in the network. The paper presents an improvement of the application of the minimum night flow method, which is based on the determination of flow thresholds. A leak alarm is generated if the night flow exceeds the thresholds. This data analysis methodology provides the capability to detect the pipe bursts quickly, thereby reducing the runtime of leakage. The application of the improved method allowed the detection of 25 unreported leaks and decreased the Non-Revenue Water (NRW) level by 36%.

Keywords

Water Leakage Detection Balance Minimum night flow 

References

  1. Alkasseh JA, Adlan M, Abustan I, Aziz H, Hanif A (2013) Applying minimum night flow to estimate water loss using statistical modeling: a case study in Kinta Valley, Malaysia. Water Resour Manag 27:1439–1455. doi: 10.1007/s11269-012-0247-2 CrossRefGoogle Scholar
  2. Ayala–Cabrera D, Herrera M, Izquierdo J, Ocaña–Levario S, Pérez–García R (2013) GPR-based water leak models in water distribution systems. Sensors 13:15912–15936CrossRefGoogle Scholar
  3. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B (2008) KNIME: the Konstanz information miner. In: Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R (eds) Data analysis, machine learning and applications: proceedings of the 31st annual conference of the Gesellschaft für Klassifikation E.V., Albert-Ludwigs-Universität Freiburg, March 7–9, 2007. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 319–326. doi: 10.1007/978-3-540-78246-9_38
  4. Boulos PF, Wiley AN (2013) Can we make water systems smarter? Opflow 39:20–22CrossRefGoogle Scholar
  5. Buchberger SG, Nadimpalli G (2004) Leak estimation in water distribution systems by statistical analysis of flow readings. J Water Resour Plan Manag 130:321–329. doi: 10.1061/(ASCE)0733-9496(2004)130:4(321) CrossRefGoogle Scholar
  6. Chen XY, Chau KW, Busari AO (2015) A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model. Eng Appl Artif Intell 46(Part A):258–268. doi: 10.1016/j.engappai.2015.09.010 CrossRefGoogle Scholar
  7. Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd international conference on machine learning. ACM, pp 233–240Google Scholar
  8. Fahmy M, Moselhi O (2009) Detecting and locating leaks in underground water mains using thermography. In: Proceedings of the 26th international symposium on automation and robotic in construction (ISARC), Austin, Texas, U.S., pp 61–67Google Scholar
  9. Fang X, Misra S, Xue G, Yang D (2012) Smart grid—the new and improved power grid: a survey communications surveys & tutorials. IEEE 14:944–980Google Scholar
  10. Fantozzi M, Calza F, Lambert A (2009) Experience and results achieved in introducing district metered areas (DMA) and pressure management areas (PMA) at Enia utility (Italy). In: IWA International Specialised Conference Water Loss, Cape Town, SaatavissaGoogle Scholar
  11. Fantozzi M, Lambert AO, Liemberger R (2010) Some examples of European water loss targets, and the law of unintended consequences. In: Proceedings of the international water association conference: water loss, Sao Paulo, Brazil. pp 192–200Google Scholar
  12. Farah E, Abdallah A, Shahrour I (2017) Sunrise: large scale demonstrator of the smart water system. Int J Sustain Dev Plan 12:112–121CrossRefGoogle Scholar
  13. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874. doi: 10.1016/j.patrec.2005.10.010 CrossRefGoogle Scholar
  14. García VJ, Cabrera E, Cabrera Jr E (2006) The minimum night flow method revisited. In: Proceedings of the 8th annual water distribution systems analysis symposium. Cincinnati, USAGoogle Scholar
  15. Hunaidi O, Wang A, Bracken M, Gambino T, Fricke C (2004) Acoustic methods for locating leaks in municipal water pipe networks. In: Proceedings of the International Conference on Water Demand Management, Dead Sea, Jordan, 30 May - 3 June 2004. pp 1–14Google Scholar
  16. Jones C, Mergelas B, Laven K, Bond A (2006) Pinpointing exfiltration in large diameter pressurized wastewater pipelines with the Sahara tethered system. In: Pipelines 2006. Am Soc Civil Eng, pp 1–8. doi: 10.1061/40854(211)14
  17. Kingdom B, Liemberger R, Marin P (2006) The challenge of reducing non-revenue (NRW) water in developing countries. How the private sector can help: a look at performance-based service contracting water supply and sanitation (WSS) sector board discussion paper N 8 Washington DC the World BankGoogle Scholar
  18. Kvanli A, Pavur R, Keeling K (2006) Concise managerial statistics. South-Western Thomson Learning, MasonGoogle Scholar
  19. Lambert A (2002) International report: water losses management and techniques. Water Sci Technol Water Supply 2:1–20Google Scholar
  20. Morrison J (2010) Managing leakage by district metered access: a practical approach. Water 21:44–46Google Scholar
  21. Mutikanga HE, Sharma SK, Vairavamoorthy K (2013) Methods and tools for managing losses in water distribution systems. J Water Resour Plan Manag 139:166–174. doi: 10.1061/(ASCE)WR.1943-5452.0000245 CrossRefGoogle Scholar
  22. Noran P, Obenauf P (2010) Asset Management of a Failing 36″ ductile iron sewage force main. In: pipelines 2010. Am Soc Civil Eng, pp 566–576. doi: 10.1061/41138(386)55
  23. dos Santos CC, Pereira Filho AJ (2014) Water demand forecasting model for the metropolitan area of São Paulo, Brazil. Water Resour Manag 28:4401–4414. doi: 10.1007/s11269-014-0743-7 CrossRefGoogle Scholar
  24. Shahrour I, Abbas O, Abdallah A, Abourjeily Y, Farah E (2016) SunRise Smart Water : Démonstrateur à grande échelle des réseaux d’eau intelligents. In: 95e congrès de l'ASTEE (Association Scientifique et Technique pour l'Eau et l'Environnement), Issy-les-Moulineaux, France. pp 145–150Google Scholar
  25. Sturm R, Thornton J (2005) Proactive leakage management using district metered areas (DMA) and pressure management – is it applicable in North America? In: Proceedings of the international water association conference: leakage 2005, Halifax, CanadaGoogle Scholar
  26. Tabesh M, Yekta AHA, Burrows R (2009) An integrated model to evaluate losses in water distribution systems. Water Resour Manag 23:477–492. doi: 10.1007/s11269-008-9284-2 CrossRefGoogle Scholar
  27. Thornton J, Sturm R, Kunkel G (2008) Water loss control, Second edn. McGraw Hill Professional, 285 pages, USAGoogle Scholar
  28. Wu CL, Chau KW, Fan C (2010) Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J Hydrol 389:146–167. doi: 10.1016/j.jhydrol.2010.05.040 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Laboratoire de Génie Civil et géo-Environnement (LGCgE)Université de LilleVilleneuve d’AscqFrance

Personalised recommendations