Advertisement

Water Resources Management

, Volume 31, Issue 15, pp 4801–4819 | Cite as

Calibration via Multi-period State Estimation in Water Distribution Systems

Article

Abstract

Calibration of model parameters is of utmost importance to ensure the good performance of hydraulic simulation models. In this work, calibration is conceived within a joint multi-period parameter and state estimation approach, where model parameters (i.e. roughness coefficients) and hydraulic variables should be computed from available measurements at different times. The aim of this paper is twofold: (1) to present a novel methodology for the calibration of water networks via multi-period state estimation, and (2) to adapt observability analysis to this approach. The novelty of this work is that such a large-scale non-linear optimisation problem is here solved using mathematical programming decomposition techniques. On the other hand, observability analysis requires the construction of the multi-period measurement and parameter Jacobian matrix of the problem. The proposed approach enables computation of the observable roughness coefficients from available readings over time, making possible the periodic reassessment of roughness values based on recent online measurements. The potential of the method is illustrated by means of a case study, which shows how such a methodology would contribute to make the most of telemetry data for calibration purposes.

Keywords

Weighted least squares Decomposition techniques Observability analysis Network monitoring 

References

  1. Bhave PR (1988) Calibrating water distribution network models. J Environ Eng 114(1):120–136CrossRefGoogle Scholar
  2. Boulos PF, Ormsbee LE (1991) Explicit network calibration for multiple loading conditions. Civ Eng Syst 8(3):153–160CrossRefGoogle Scholar
  3. Boulos PF, Wood DJ (1990) Explicit calculation of pipe-network parameters. J Hydraul Eng 116(11):1329–1344CrossRefGoogle Scholar
  4. Brdys MA, Chen K (1993) Joint state and parameter estimation of dynamic water supply systems with unknown but bounded uncertainty. In: Coulbeck B (ed) Integrated computer applications in water supply, vol 1. Research Studies Press, Baldock, pp 335–355Google Scholar
  5. Brdys MA, Chen K (1994) Joint state and parameter estimation of dynamic water supply system under bounded uncertainty using geometric programming. In: Blanke M, Soderstrom T (eds) Proceedings 10 IFAC symposium on system identification, vol 3. Copenhaguen, Denmark, pp 331–336Google Scholar
  6. Brdys MA, Ulanicki B (2002) Operational control of water systems: structures, algorithms and applications. Prentice Hall, LondonGoogle Scholar
  7. Broyden CG (1970) The convergence of a class of double-rank minimization algorithms: 2. The new algorithm. J Inst Math Appl 6(3):222–231CrossRefGoogle Scholar
  8. Caro E, Conejo A J, Mínguez R (2008) A mathematical programming approach to state estimation. In: Castronuovo E D (ed) Optimization advances in electric power systems. Nova Science Publishers, New York, pp 1–26Google Scholar
  9. Castillo E, Conejo AJ, Pruneda RE, Solares C (2005) State estimation observability based on the null space of the measurement jacobian matrix. IEEE Trans Power Syst 20(3):1656–1658CrossRefGoogle Scholar
  10. Conejo AJ, Castillo E, Mínguez R, García-Bertrand R (2006) Decomposition techniques in mathematical programming. Engineering and science applications. Springer-Verlag Berlin Heidelberg, New YorkGoogle Scholar
  11. Datta RSN, Sridharan K (1994) Parameter estimation in water-distribution systems by least squares. J Water Resour Plann Manag 120(4):405–422CrossRefGoogle Scholar
  12. Díaz S, González J, Mínguez R (2016a) Observability analysis in water transport networks: algebraic approach. J Water Resour Plann Manag 142(4):04015071CrossRefGoogle Scholar
  13. Díaz S, González J, Mínguez R (2016b) Uncertainty evaluation for constrained state estimation in water distribution systems. J Water Resour Plann Manag 142(12):06016004CrossRefGoogle Scholar
  14. Díaz S, Mínguez R, González J (2017) Topological observability analysis in water distribution systems. J Water Resour Plann Manag 143(5):06017001CrossRefGoogle Scholar
  15. Drud A (1996) CONOPT: a system for large scale nonlinear optimization. ARKI Consulting and Development A/S, BagsvaerdGoogle Scholar
  16. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317–322CrossRefGoogle Scholar
  17. Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comput 24(109):23–26CrossRefGoogle Scholar
  18. Kapelan ZS, Savic DA, Walters GA (2007) Calibration of water distribution hydraulic models using a Bayesian-type procedure. J Hydraul Eng 133(8):927–936CrossRefGoogle Scholar
  19. Kumar SM, Narasimhan S, Bhallamudi SM (2008) State estimation in water distribution networks using graph-theoretic reduction strategy. J Water Resour Plann Manag 134(5):395–403CrossRefGoogle Scholar
  20. Kumar SM, Narasimhan S, Bhallamudi SM (2010) Parameter estimation in water distribution networks. Water Resour Manag 24(6):1251–1272CrossRefGoogle Scholar
  21. Lansey KE, Basnet C (1991) Parameter estimation for water distribution networks. J Water Resour Plan Manag 117(1):126–144CrossRefGoogle Scholar
  22. Lansey KE, El-Shorbagy W, Ahmed I, Araujo J, Haan CT (2001) Calibration assessment and data collection for water distribution networks. J Hydraul Eng 127(4):270–279CrossRefGoogle Scholar
  23. Mallick KN, Ahmed I, Tickle KS, Lansey KE (2002) Determining pipe groupings for water distribution networks. J Water Resour Plan Manag 128(2):130–139CrossRefGoogle Scholar
  24. Murtagh BA, Saunders MA (1998) MINOS 5.5 user’s guide. Rep SOL 83-20R Dept of Operations Research. Stanford Univ, USAGoogle Scholar
  25. Pérez R (2003) Identifiability and calibration of water network models. PhD thesis Univ. Politécnica de Catalunya, SpainGoogle Scholar
  26. Piller O (1995) Modeling the behavior of a network - hydraulic analysis and sampling procedures for parameter estimation. PhD thesis, Univ. of Bordeaux, FranceGoogle Scholar
  27. Piller O, Elhay S, Deuerlein J, Simpson AR (2017) Local sensitivity of pressure-driven modeling and demand-driven modeling steady-state solutions to variations in parameters. J Water Resour Plan Manag 143(2):04016074CrossRefGoogle Scholar
  28. Rahal CM, Sterling MJH, Coulbeck B (1980) Parameter tuning for simulation models of water distribution networks. Proc Inst Civ Eng 69(3):751–762Google Scholar
  29. Reddy PVN, Sridharan K, Rao PV (1996) WLS method for parameter estimation in water distribution networks. J Water Resour Plan Manag 122(3):157–164CrossRefGoogle Scholar
  30. Savic DA, Walters GA (1995) Genetic algorithm techniques for calibrating network models. Tech. Rep. 95/12 Centre for Systems and Control Engineering. Univ. of Exeter, UKGoogle Scholar
  31. Savic DA, Kapelan ZS, Jonkergouw PMR (2009) Quo vadis water distribution model calibration? Urban Water J 6(1):3–22CrossRefGoogle Scholar
  32. Shanno DF (1970) Conditioning of quasi-newton methods for function minimization. Math Comput 24(111):647–656CrossRefGoogle Scholar
  33. Wu ZY, Clark C (2009) Evolving effective hydraulic model for municipal water systems. Water Resour Manag 23(1):117–136CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of Castilla-La ManchaCiudad RealSpain
  2. 2.Hidralab Ingeniería y Desarrollos, S.L.Spin-Off UCLM, Hydraulics Laboratory University of Castilla-La ManchaCiudad RealSpain

Personalised recommendations