A Big-data Inspired Precision Improvement Algorithm for Autonomous Navigation Based on Period Variable Stars

Abstract

Periodic variable navigation can realize the integration of positioning, attitude determination, timing and other functions. As a novel autonomous navigation method, autonomous management and autonomous operation of spacecraft are the main direction of great significance to reduce the burden of ground measurement and control, to improve the viability of spacecraft, While, the precision of the navigation is very critical for the use of periodic variable navigation for the long range spacecraft. So, we propose a big-data inspired precision improvement algorithm in this paper. Period variable star phase time measurement is used as observation information, and accomplished by the orbital dynamics equation of spacecraft motion. According to the gathering of the sampling data and the sensor data, a self-learning system is trained with the parameters from the nonlinear filtering methods. Based on the Unscented Kalman Filtering, an autonomous navigation algorithm of period variable star is established to realize the navigation and positioning of spacecraft. Under the measurement conditions of a single sampling interval of 0.01s and the measurement precision of period variable star phase observation time of 10− 5s, It can be find that the navigation position determination precision can reach 400m, the speed determination precision can reach 0.3m/s, and the measurement precision can reach 10− 5s with our proposed algorithm.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

References

  1. 1.

    Hua, B., Zhang, Z., Wu, Y., & et al. (2018). Autonomous navigation algorithm based on AUKF filter about fusion of geomagnetic and sunlight directions[J]. International Journal of Intelligent Computing & Cybernetics.

  2. 2.

    Xin, S., Wang, Y., Zheng, W., & et al. (2018). An interplanetary network for spacecraft autonomous navigation [J]. Journal of Navigation, 71(6), 1381–1395.

    Article  Google Scholar 

  3. 3.

    Dar, A.A., Parihar, P.S., Saleh, P., & et al. (2018). Search for variable stars in the open cluster NGC 2509 [J]. New Astronomy :S1384107617304062.

  4. 4.

    Lee, D. -J., & Alfriend, K.T. (2003). Precise real-time orbit estimation using the unscented Kalman filter [A]. In Proceedings of the 13th AAS/AIAA space flight mechanics winter meeting [C], Ponce, Puerto Rico (pp. 9–13).

  5. 5.

    Crassidis, J.L., & Markley, F.L. (2003). Unscented filter for spacecraft attitude estimation[J]. Journal of Guidance, Control, and Dynamics, V26(4), 536–542.

    Article  Google Scholar 

  6. 6.

    Guanghui, D., Zhuofan, L., Rong, Z., & et al. (2018). Spacecraft autonomous navigation with cubature Kalman filter based on sun-earth-moon information[J]. Chinese Space Science and Technology.

  7. 7.

    Julier, S.J., Uhlmann, J.K., & Durrant-Whyte, H.F. (2000). A new method for nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, V45(3), 477–482.

    MathSciNet  Article  Google Scholar 

  8. 8.

    Wan, E.A., & Van Der Merwe, R. (2000). The unscented kalman filter for nonlinear estimation[A]. In Proceedings of the IEEE symposium 2000 (AS-SPCC)[C]. Lake Louise, Alberta, Canada (pp. 153–158).

  9. 9.

    Julier S. J., & Uhlmann J. K. A general method for approximating nonlinear transformations of probability distributions[EB/OL]. http://www.robots.ox.uk/-siju,2007-10-30.

  10. 10.

    Gai, K., Qiu, M., & Zhao, H. (2016). Security-aware efficient mass distributed storage approach for cloud systems in big data [C]. In 2016 IEEE 2nd International conference on big data security on cloud (BigDataSecurity), IEEE International conference on high performance and smart computing (HPSC), and IEEE International conference on intelligent data and security (IDS) (pp. 140–145).

  11. 11.

    Qiu, M., Jia, Z., Xue, C., & et al. (2007). Voltage assignment with guaranteed probability satisfying timing constraint for real-time multiproceesor DSP [J]. The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 46, 55–73.

    Article  Google Scholar 

  12. 12.

    Qiu, M., Zhang, K., & Huang, M. (2004). An empirical study of web interface design on small display devices [C]. IEEE/WIC/ACM International Conference on Web Intelligence(WI 2004), 29–3.

  13. 13.

    Gai, K., Qiu, M., Zhao, H., & Sun, X. (2018). Resource management in sustainable Cyber-Physical systems using heterogeneous cloud computing [J]. IEEE Transactions on Sustainable Computing, 3(2), 60–72.

    Article  Google Scholar 

  14. 14.

    Dai, W., Qiu, L., Wu, A., & Qiu, M. (2018). Cloud infrastructure resource allocation for big data applications [J]. IEEE Transactions on Big Data, 4(3), 313–324.

    Article  Google Scholar 

  15. 15.

    Godsill, S.J., Doucet, A., & West, M. (2004). Monte carlo smoothing for nonlinear time series [J]. Journal of the American Statistical Association, V99(465), 156–168.

    MathSciNet  Article  Google Scholar 

  16. 16.

    Kalman, R.E. (1960). A new approach to linear filtering and prediction problems. Transaction of the ASME, Journal of Basic Engineering, 82(Series D), 34–45.

    MathSciNet  Google Scholar 

  17. 17.

    Julier, S.J., Uhlmann, J.K., & Durrant-Whyte, H.F. (1995). A new approach for filtering nonlinear systems[A]. Proceedings of the American control conference [C]. Seattle, Washington, 1628–1632.

  18. 18.

    Julier, S.J., Uhlmann, J.K., & Durrant-Whyte, H.F. (2000). A new method for nonlinear transformation of means and covariances in filters and estimators [J]. IEEE Transactions on Automatic Control, V45(3), 477–482.

    MathSciNet  Article  Google Scholar 

  19. 19.

    Wan, E.A., & Van Der Merwe, R. (2000). The unscented Kalman filter for nonlinear estimation [A]. Proceedings of The IEEE symposium 2000 (AS-SPCC) [C]. Lake Louise, Alberta, Canada, 153–158.

  20. 20.

    Julier, S.J., & Uhlmann, J.K. (2002). Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations [A]. Proceedings of the American control conference[C]. Anchorage, AK, 887–892.

  21. 21.

    Julier, S.J. (2003). The spherical simplex unscented transformation [A]. Proceedings of the american control conference [C]. Denver, Colorado, 2430–2434.

  22. 22.

    Van der Merwe, R., & Wan, E.A. (2001). The square-root unscented Kalman filter for state and parameter-estimation [A]. International conference on acoustics, speech and signal processing, Salt Lake City, 3461–3464.

  23. 23.

    Lee, D.J., & Alfriend, K.T. (2004). Adaptive sigma point filtering for state and parameter estimation [A]. AIAA, 2004–5101.

  24. 24.

    Nørgaard, M., Poulsen, N.K., & Ravn, O. (2000). New developments in state estimation for nonlinear syetems [J]. AUTOMATICA, V36, 1627–1638.

    Article  Google Scholar 

  25. 25.

    Ito, K., & Xiong, K. (2000). Gaussian filters for nonlinear filtering problems [J]. IEEE Transactions on Automatic Control, V45(5), 910–927.

    MathSciNet  Article  Google Scholar 

  26. 26.

    Gordon, N.J., Salmond, D.J., & Smith, A.F.M. (1993). Novel approach to nonlinear and Non-Gaussian state estimation [J]. IEE Proceedings-F, V140(2), 107–113.

    Google Scholar 

  27. 27.

    Doucet, A., De Freitas, J.F.G., & Gordon, N.J. (2001). Sequential monte carlo methods in practice [M]. New York: Springer.

    Google Scholar 

  28. 28.

    Crisan, D., & Doucet, A. (2002). A survey of convergence results on particle filtering methods for practitioners [J]. IEEE Transaction On Signal Processing, V50(3), 736–746.

    MathSciNet  Article  Google Scholar 

  29. 29.

    Pitt, M., & Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters [J]. Journal of American Statistics, V94(446), 590–599.

    MathSciNet  Article  Google Scholar 

  30. 30.

    Andrieu, C., De Freitas, N., & Doucet, A. (1999). A sequential MCMC for bayesian model selection [A]. Proceedings of the IEEE signal processing workshop on Higher-Order statistics, Ceasarea, Israel, 130–134.

  31. 31.

    Brun, O., Teuliere, V., & Garcia, J.M. (2002). Parallel particle filtering [J]. Journal of Parallel and Distributed Computing, 62, 1186–1202.

    Article  Google Scholar 

  32. 32.

    Deutshcer, J., Davison, A., & Filtering, Reid I. (2000). Articulated Body motion capture by annealed particle [A]. Proceedings IEEE conference on computer vision and pattern recognition[C], Hilton Head Island, South Carolina, 126–133.

  33. 33.

    Doucet, A., Godsill, S.J., & Andrieu, C. (2000). On sequential monte carlo sampling methods for bayesian filtering [J]. Statistics and Computing, V10(3), 197–208.

    Article  Google Scholar 

  34. 34.

    Wiberg, D.M. (1989). The MIMO Wiberg Estimator [A]. Proceedings of the 28th IEEE conference on decision and control[C]. Tampa, 2590–2594.

  35. 35.

    Mehra, R.K. (1970). On the identification of variances and adaptive Kalman Filtering [J]. IEEE Transactions on Automatic Control, V15(2), 175–184.

    MathSciNet  Article  Google Scholar 

  36. 36.

    Challa, S., & Bar-Shalom, Y. (2000). Nonlinear filter design using Fokker-Planck-Kolmogorov probability density evolutions [J]. IEEE Transaction on Aerospace and Electronic Systems, V36(1), 309–315.

    Article  Google Scholar 

  37. 37.

    Bucy, R.S., & Senne, K.D. (1971). Digital synthesis of nonlinear filters [J]. Automatica, V7(3), 287–298.

    Article  Google Scholar 

  38. 38.

    Yau, S. S.-T., & Hu, G.Q. (2001). Finite-Dimensional filters with nonlinear drift x explicit solution of DMZ equation [J]. IEEE Transaction on Automatic Control, V46(1), 142–148.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiwei Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Tang, G. A Big-data Inspired Precision Improvement Algorithm for Autonomous Navigation Based on Period Variable Stars. J Sign Process Syst (2021). https://doi.org/10.1007/s11265-021-01639-1

Download citation

Keywords

  • Big-data analysis
  • Period variable stars
  • Autonomous navigation
  • Unscented Kalman filter