Back-to-Back Butterfly Network, an Adaptive Permutation Network for New Communication Standards

Abstract

In this paper, we introduce a Back-to-Back Butterfly Network (B2BN) based on multiplexers (MUXs) in which any kind of permutation can be performed. However, for a given permutation, it is not an easy task to select the appropriate paths in B2BN without any conflict in terms of MUXs. In this paper, we propose a formal model to efficiently solve such conflicts. The proposed method relies on collecting the sets of potential paths that transfer an input to an output. Then, a path from each set is selected respecting a conflict free constraint. Once the appropriate paths are selected, the control signals of the MUXs are generated. This model has been experimented with 5G communication, showing how to process several frames in parallel with different permutation constraints.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References

  1. 1.

    [n.d.] http://programming.sirrida.de/bit_perm.html.

  2. 2.

    [n.d.] http://pages.cs.wisc.edu/~tvrdik/10/html/Section10.html.

  3. 3.

    [n.d.] http://www.3gpp.org.

  4. 4.

    [n.d.] https://www.gecode.org/doc-latest/MPG.pdf.

  5. 5.

    3GPP. (2020). 3rd Generation Partnership Project (3GPP). Retrieved June 06, 2020 from http://www.3gpp.org.

  6. 6.

    Benes, V. (1964). Optimal rearrangeable multistage connecting networks. Bell System Technical Journal, 43(7), 1641–1656.

    MathSciNet  Article  Google Scholar 

  7. 7.

    Boutillon, E., & Harb, H. (2020). Extended Barrel-Shifter for versatile QC-LDPC decoders. IEEE Wireless Communications Letters, pp. 1–1. https://doi.org/10.1109/LWC.2020.2964208.

  8. 8.

    Chavet, C., & Coussy, P. (Eds.). (2015). Advanced Hardware Design for Error Correcting Codes. Berlin: Springer. ISBN 978–3–319–10568–0.

  9. 9.

    Chen, X., Lin, S., & Akella, V. (2010). QSN—a simple circular-shift network for reconfigurable quasi-cyclic LDPC decoders. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(10), 782–786. https://doi.org/10.1109/TCSII.2010.2067811.

    Article  Google Scholar 

  10. 10.

    Cui, Y., Peng, X., Chen, Z., Zhao, X., Lu, Y., Zhou, D., & Goto, S. (2011). Ultra low power QC-LDPC decoder with high parallelism. In 2011 IEEE International SOC Conference (pp. 142–145).

  11. 11.

    Harb, H., & Chavet, C. (2020). Fully Parallel Circular-Shift Rotation Network for Communication Standards. IEEE Transactions on Circuits and Systems II: Express Briefs, pp 1–1.

  12. 12.

    Lin, J., Wang, Z., Li, L., Sha, J., & Gao, M. (2009). Efficient shuffle network architecture and application for WiMAX LDPC decoders. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(3), 215–219. https://doi.org/10.1109/TCSII.2009.2015353.

    Article  Google Scholar 

  13. 13.

    Lin, W., Sheu, T., Das, C.R., Feng, T., & Wu, C. (1988). Fast data selection and broadcast on the butterfly network. In Proceedings. Workshop on the Future Trends of Distributed Computing Systems in the 1990s (pp. 65–72). https://doi.org/10.1109/FTDCS.1988.26681.

  14. 14.

    Milicevic, M., & Gulak, P.G. (2018). A multi-Gb/s frame-interleaved LDPC decoder with path-unrolled message passing in 28-nm CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(10), 1908–1921.

    Article  Google Scholar 

  15. 15.

    Motozuka, H., Yosoku, N., Sakamoto, T., Tsukizawa, T., Shirakata, N., & Takinami, K. (2015). A 6.16Gb/s 4.7pJ/bit/iteration LDPC decoder for IEEE 802.11ad standard in 40nm LP-CMOS. In 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (pp. 1289–1292).

  16. 16.

    Moussa, H., Muller, O., Baghdadi, A., & Jezequel, M. (2007a). Butterfly and Benes-based on-chip communication networks for multiprocessor turbo decoding. In 2007 Design, Automation Test in Europe Conference Exhibition (pp. 1–6). https://doi.org/10.1109/DATE.2007.364668.

  17. 17.

    Moussa, H., Muller, O., Baghdadi, A., & Jezequel, M. (2007b). Butterfly and Benes-based on-chip communication networks for multiprocessor turbo decoding. In 2007 Design, Automation Test in Europe Conference Exhibition (pp. 1–6). https://doi.org/10.1109/DATE.2007.364668.

  18. 18.

    Lee, T., Nguyen, H., T.T.B., & Tan, N. (2019). Efficient QC-LDPC encoder for 5G new radio. Electronics, 8(6), 668.

    Article  Google Scholar 

  19. 19.

    Reehman, S.U., Chavet, C., Coussy, P., & Sani, A. (2015). In-place memory mapping approach for optimized parallel hardware interleaver architectures. In 2015 design, automation test in Europe conference exhibition (DATE) (pp. 896–899). https://doi.org/10.7873/DATE.2015.1055.

  20. 20.

    Sani, A., Coussy, P., & Chavet, C. (2016). A dynamically reconfigurable ECC decoder architecture. In 2016 Design, Automation Test in Europe Conference Exhibition (DATE) (pp. 1437–1440).

  21. 21.

    Sani, A.H., Coussy, P., & Chavet, C. (2013). A first step toward on-chip memory mapping for parallel turbo and LDPC decoders: a polynomial time mapping algorithm. IEEE Transactions on Signal Processing, 61(16), 4127–4140. https://doi.org/10.1109/TSP.2013.2264057.

    MathSciNet  Article  Google Scholar 

  22. 22.

    Sarika, K.T., & Deepthi, P.P. (2014). A channel coder design for a high speed and less complex communication system using QC-LDPC codes. In 2014 International Conference on Communication and Signal Processing (pp. 326–330). https://doi.org/10.1109/ICCSP.2014.6949855.

  23. 23.

    Tarable, A., Benedetto, S., & Montorsi, G. (2004). Mapping interleaving laws to parallel turbo and LDPC decoder architectures. IEEE Transactions on Information Theory, 50(9), 2002–2009. https://doi.org/10.1109/TIT.2004.833353.

    MathSciNet  Article  Google Scholar 

  24. 24.

    Thul, M.J., Gilbert, F., & Wehn, N. (2002). Optimized concurrent interleaving architecture for high-throughput turbo-decoding. In 9th International Conference on Electronics, Circuits and Systems, (Vol. 3 pp. 1099–1102). https://doi.org/10.1109/ICECS.2002.1046443.

  25. 25.

    Lin, S., Chen, X., & Akella, V. (2010). QSN : a simple circular-shift network for reconfigurable quasi-cyclic LDPC decoders. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(10), 782–786.

    Article  Google Scholar 

  26. 26.

    Zhong, Z., Huang, Y., Zhang, Z., You, X., & Zhang, C. (2020). A flexible and high parallel permutation network for 5G LDPC decoders. IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1–1.

Download references

Acknowledgements

This work has been founded the Brittany region and the EU that funded the project through the FEDER program in the frame of the FLEXDEC-5G project. The authors would like also to thank Jeremie Nadal (Post-Doc. IMT Atlantique) and Cedric Marchand (PhD - Engineer / Lab-STICC) for their corrections and suggestions to improve the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cyrille Chavet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harb, H., Chavet, C. Back-to-Back Butterfly Network, an Adaptive Permutation Network for New Communication Standards. J Sign Process Syst (2021). https://doi.org/10.1007/s11265-020-01628-w

Download citation

Keywords

  • 5G
  • Butterfly Network
  • Back-to-Back Butterfly Network
  • Permutation
  • QC-LDPC