Skip to main content

Advertisement

Log in

Surface IgM λ light chain is involved in the binding and infection of infectious bursal disease virus (IBDV) to DT40 cells

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Infectious bursal disease virus (IBDV) is an important immunosuppressive virus in chickens. Surface immunoglobulin M (sIgM)-bearing B lymphocytes act as the major targets of IBDV in the bursa of Fabricius, and sIgM may function as one of the membrane binding sites responsible for IBDV infection. Recently, using the virus overlay protein binding assay, the chicken λ light chain of sIgM was identified to specifically interact with IBDV in a virulence-independent manner in vitro. To further investigate sIgM λ light chain-mediated IBDV binding and infection in pre-B cells, the cell line DT40, which is susceptible to both pathogenic and attenuated IBDV, was used. Based on the RNA interference strategy, the DT40 cell line whose λ light chain of sIgM was stably knocked down, herein termed DT40LKD, was generated by the genomic integration of a specific small hairpin RNA and a green fluorescence protein co-expression construct. Flow cytometry analysis indicated that the binding of IBDV to DT40LKD cells was significantly reduced due to the loss of sIgM λ light chain. In particular, reduced viral replication was observed in IBDV-incubated DT40LKD cells, and no viral release into cell culture medium was detected by the IBDV rapid diagnostic strips. In addition, the rescue of sIgM λ light chain expression restored viral binding and replication in DT40LKD cells. These results show that sIgM λ light chain appears to be beneficial for IBDV attachment and infection, suggesting that sIgM acts as a binding site involved in IBDV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.I. Sapats, H.G. Heine, L. Trinidad, G.J. Gould, A.J. Foord, S.G. Doolan, S. Prowse, J. Ignjatovic, Arch. Virol. 148(3), 497–515 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. H. Müller, M.R. Islam, R. Raue, Vet. Microbiol. 97(1–2), 153–165 (2003)

    Article  PubMed  Google Scholar 

  3. F.S. Kibenge, P.K. McKenna, Avian Dis. 36(2), 256–261 (1992)

    Article  CAS  PubMed  Google Scholar 

  4. H. Nieper, H. Muller, J. Gen. Virol. 77(pt 6), 1229–1237 (1996)

    Article  CAS  PubMed  Google Scholar 

  5. A. Setiyono, T. Hayashi, T. Yamaguchi, H. Fukushi, K. Hirai, J. Vet. Med. Sci. 63(2), 219–221 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. T.W. Lin, C.W. Lo, S.Y. Lai, R.J. Fan, C.J. Lo, Y.M. Chou, R. Thiruvengadam, A.H.J. Wang, M.Y. Wang, J. Virol. 81(16), 8730–8741 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. X.G. Ren, L.Z. Zhang, Y.L. Gao, H.L. Gao, Y.Q. Wang, C.J. Liu, H.Y. Cui, Y.P. Zhang, L.L. Jiang, X.L. Qi, X.M. Wang, Virus Res. 210, 232–240 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. K. Hirai, B.W. Calnek, Infect. Immun. 25(3), 964–970 (1979)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. K. Hirai, T. Funakoshi, T. Nakai, S. Shimakura, Avian Dis. 25(2), 484–496 (1981)

    Article  CAS  PubMed  Google Scholar 

  10. E. Burkhardt, H. Muller, Arch. Virol. 94(3–4), 297–303 (1987)

    Article  CAS  PubMed  Google Scholar 

  11. J.C. Rodriguez-Lecompte, R. Nino-Fong, A. Lopez, R.J. Frederick Markham, F.S. Kibenge, Comp. Immunol. Microbiol. Infect. Dis. 28(4), 321–337 (2005)

    Article  PubMed  Google Scholar 

  12. K. Terasaki, H. Hirayama, C.J. Kasanga, M.T. Maw, K. Ohya, T. Yamaguchi, H. Fukushi, J. Vet. Med. Sci. 70(4), 407–410 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. J. Luo, G.P. Zhang, J.M. Fan, M. Teng, L.M. You, L. Zhou, R.G. Deng, X.N. Wang, Y.Y. Yang, L. Wang, G.X. Xing, N. Cheng, Arch. Virol. 154(3), 513–517 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. T.W. Baba, B.P. Giroir, E.H. Humphries, Virology 144(1), 139–151 (1985)

    Article  CAS  PubMed  Google Scholar 

  15. P. Winding, M.W. Berchtold, J. Immunol. Methods 249(1–2), 1–16 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. W.T. McCormack, L.W. Tjoelker, C.B. Thompson, Annu. Rev. Immunol. 9, 219–241 (1991)

    Article  CAS  PubMed  Google Scholar 

  17. J. Luo, H. Zhang, M. Teng, J.M. Fan, L.M. You, Z.J. Xiao, M.L. Yi, Y.B. Zhi, X.W. Li, G.P. Zhang, Avian Pathol. 39(5), 359–365 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. P.P. Li, L.M. You, J. Luo, W. E, Z.Z. Jiang, Y.B. Zhi, G.P. Zhang, A.P. Wang, China Biotechnol. 31(11), 81–89 (2011)

    CAS  Google Scholar 

  19. G.P. Zhang, Q.M. Li, Y.Y. Yang, J.Q. Guo, X.W. Li, R.G. Deng, Z.J. Xiao, G.X. Xing, J.F. Yang, D. Zhao, S.J. Cai, W.M. Zang, Avian Dis. 49(2), 177–181 (2005)

    Article  PubMed  Google Scholar 

  20. C. Tayade, M. Koti, S.C. Mishra, Vaccine 24(26), 5473–5480 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. L. Hudson, M. Pattison, N. Thantrey, Eur. J. Immunol. 5(10), 675–679 (1975)

    Article  CAS  PubMed  Google Scholar 

  22. M. Ogawa, T. Yamaguchi, A. Setiyono, T. Ho, H. Matsuda, S. Furusawa, H. Fukushi, K. Hirai, Arch. Virol. 143(12), 2327–2341 (1998)

    Article  CAS  PubMed  Google Scholar 

  23. S. Gonzalez-Reyes, A. Garcia-Manso, G. del Barrio, K.P. Dalton, L. Gonzalez-Molleda, J. Arrojo-Fernandez, I. Nicieza, F. Parra, J. Gen. Virol. 90(Pt 11), 2724–2730 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. X. Li, D.S. Bangari, A. Sharma, S.K. Mittal, Virology 392(2), 162–168 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Das, S.V. Laxminarayana, N. Chandra, V. Ravi, A. Desai, Virology 385(1), 47–57 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. J.S. Chang, S.C. Chi, J. Virol. 89(1), 61–70 (2015)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the editors and anonymous reviewers for their helpful suggestions on the quality improvement of our paper. This work was supported by the Fundamental Research Funds for the Central Universities of China (No. 2016-JYB-JSMS-004), Key Program of NSFC-Henan Joint Fund (No. U1604232), the National Natural Science Foundation of China (No. 31602050) and the National Key Research & Development Program of China (No. 2016YFD0500800).

Author information

Authors and Affiliations

Authors

Contributions

JC, LY, JL, and GZ conceived and designed the experiments. JC, PL, LY, and MT performed the experiments. LY, JL, GZ, and AW analysed the data. JC and LY wrote the paper and designed the figures. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jun Luo or Aiping Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Edited by William Dundon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, J., You, L., Li, P. et al. Surface IgM λ light chain is involved in the binding and infection of infectious bursal disease virus (IBDV) to DT40 cells. Virus Genes 54, 236–245 (2018). https://doi.org/10.1007/s11262-018-1535-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-018-1535-6

Keywords

Navigation