Interferon lambda4 polymorphism is not associated with human papillomavirus infection outcome
Abstract
Interferon (IFN) lambdas are important specific components of the mucosal innate immune response. The IFN lambda 4 (IFNL4) dinucleotide polymorphism (ΔG/TT) determines the IFN lambdas and related Interferon-stimulated genes activation, in HCV and other chronic infections. Our group first reported that IFN Lambda response was impaired in high-risk Human Papillomavirus (HPV) cervical infections and in precancerous lesions. Accordingly, we sought to evaluate the possible role of the IFNL4 polymorphism in determining HPV infection outcome. The ΔG/TT alleles were not differently distributed in 221 women with high- or low-risk HPV infection, with HPV infection clearance or persistence, and with abnormal cytology.
Keywords
HPV Persistent infection Type III IFN Single-nucleotide polymorphisms IFN lambda 4Notes
Author contributions
FC, AP, GA, and CS participated in the design of the study. FC and MS carried out genotyping test for IFNL4 polymorphism. FC and IL carried out PCR for HPV detection. IL collected the clinical data. NR and GdE collected the clinical samples. FC, AP, and CS wrote the manuscript. All authors read and approved the final manuscript.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the ethics committee of the Policlinico Umberto I Hospital, ‘‘Sapienza’’ University of Rome.
Informed consent
Informed consent was obtained from all individual participants included in the study.
References
- 1.N. Munoz, J. Clin. Virol. 19, 1–5 (2000)CrossRefPubMedGoogle Scholar
- 2.E.R. Myers, D.C. McCrory, K. Nanda, L. Bastian, D.B. Matchar, Am. J. Epidemiol. 151(12), 1158–1171 (2000)CrossRefPubMedGoogle Scholar
- 3.M. Schiffman, P.E. Castle, J. Jeronimo, A.C. Rodriguez, S. Wacholder, Lancet 370(9590), 890–907 (2007)CrossRefPubMedGoogle Scholar
- 4.M.A. Stanley, Clin. Microbiol. 25, 215–222 (2012)CrossRefGoogle Scholar
- 5.A. Lasfar, A. Zloza, A. de la Torre, K.A. Cohen-Solal, Front Immunol. (2016). https://doi.org/10.3389/fimmu.2016.00598 PubMedPubMedCentralGoogle Scholar
- 6.L. Prokunina-Olsson, B. Muchmore, W. Tang, R.M. Pfeiffer, H. Park, H. Dickensheets, D. Hergott, P. Porter-Gill, A. Mumy, I. Kohaar, S. Chen, N. Brand, M. Tarway, L. Liu, F. Sheikh, J. Astemborski, H.L. Bonkovsky, B.R. Edlin, C.D. Howell, T.R. Morgan, D.L. Thomas, B. Rehermann, R.P. Donnelly, T.R. O’Brien, Nat. Genet. 45, 164–170 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
- 7.J. Reiser, J. Hurst, M. Voges, P. Krauss, P. Münch, T. Iftner, F. Stubenrauch, J. Virol. (2011). https://doi.org/10.1128/JVI.05279-11 Google Scholar
- 8.F. Cannella, C. Scagnolari, C. Selvaggi, P. Stentella, N. Recine, G. Antonelli, A. Pierangeli, Med. Microbiol. Immunol. (2014). https://doi.org/10.1007/s00430-014-0330-9 PubMedGoogle Scholar
- 9.M. Noureddin, Y. Rotman, F. Zhang, H. Park, B. Rehermann, E. Thomas, T.J. Liang, Genes Immun. 16(5), 321–329 (2015)CrossRefPubMedGoogle Scholar
- 10.D. Ge, J. Fellay, A.J. Thompson, J.S. Simon, K.V. Shianna, T.J. Urban, E.L. Heinzen, P. Qiu, A.H. Bertelsen, A.J. Muir, M. Sulkowski, J.G. McHutchison, D.B. Goldstein, Nature (2009). https://doi.org/10.1038/nature08309 Google Scholar
- 11.M. Eslam, A.M. Hashem, R. Leung, M. Romero-Gomez, T. Berg, G.J. Dore, H.L. Chan, W.L. Irving, D. Sheridan, M.L. Abate, L.A. Adams, A. Mangia, M. Weltman, E. Bugianesi, U. Spengler, O. Shaker, J. Fischer, L. Mollison, W. Cheng, E. Powell, J. Nattermann, S. Riordan, D. McLeod, N.J. Armstrong, M.W. Douglas, C. Liddle, D.R. Booth, J. George, G. Ahlenstiel, Nat. Commun. (2015). https://doi.org/10.1038/ncomms7422 PubMedPubMedCentralGoogle Scholar
- 12.E. Akay, M. Patel, T. Conibear, T. Chaggar, T. Haque, Intervirology (2014). https://doi.org/10.1159/000357326 PubMedGoogle Scholar
- 13.F. Pica, A. Volpi, R. Gaziano, E. Garaci, Antivir. Ther. (2010). https://doi.org/10.3851/IMP1610 PubMedGoogle Scholar
- 14.F.M. Key, B. Peter, M.Y. Dennis, E. Huerta-Sanchez, W. Tang, L. Prokunina-Olsson, R. Nielsen, A.M. Andrés, PLoS Genet. (2014). https://doi.org/10.1371/journal.pgen.1004681 Google Scholar
- 15.S.J. Griffiths, M. Koegl, C. Boutell, H.L. Zenner, C.M. Crump, F. Pica, O. Gonzalez, C.C. Friedel, G. Barry, K. Martin, M.H. Craigon, R. Chen, L.N. Kaza, E. Fossum, J.K. Fazakerley, S. Efstathiou, A. Volpi, R. Zimmer, P. Ghazal, J. Haas, PLoS Pathog. (2013). https://doi.org/10.1371/journal.ppat.1003514 Google Scholar
- 16.K.A. Lang Kuhs, M.H. Kuniholm, R.M. Pfeiffer, S. Chen, S. Desai, B.R. Edlin, M.G. Peters, M. Plankey, G.B. Sharp, H.D. Strickler, M.C. Villacres, T.C. Quinn, S.J. Gange, L. Prokunina-Olsson, R.M. Greenblatt, T.R. O’Brien, PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0138827 PubMedPubMedCentralGoogle Scholar
- 17.P.E. Castle, Infect. Agent Cancer (2009). https://doi.org/10.1186/1750-9378-4-7 PubMedPubMedCentralGoogle Scholar
- 18.S. Chinnaswamy, Genes Immun. (2016). https://doi.org/10.1038/gene.2016.24 PubMedGoogle Scholar
- 19.R. Verteramo, A. Pierangeli, E. Calzolari, A. Patella, N. Recine, E. Mancini, V. Marcone, R. Masciangelo, M. Bucci, G. Antonelli, A.M. Degener, Microbes Infect. 8, 2517–2521 (2006)CrossRefPubMedGoogle Scholar