Skip to main content
Log in

Impacts on performance of growing-finishing pigs under heat stress conditions: a meta-analysis

  • Short Communication
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

High ambient temperatures are a challenge for animal production around the world, and they are one of the major reasons for economic and productive losses in pig production. Under stress conditions, the energy contribution to productive functions is reduced, generating health imbalances, decreased productivity rates and changes in animal behavior. Despite the numerous articles published on this subject, the variability of results on performance parameters is high. For this reason, the objective of the present study was to evaluate the actual impact of high ambient temperature (HAT) (29 °C to 35 °C) on growing-finishing pig performance, compared with animals kept in a thermoneutral environment (TNT) (18 °C to 25 °C), based on meta-analysis. Data on average daily gain (ADG), average daily feed intake (FI) and feed gain ratio (F:G) were extracted from 22 (n = 22) papers published in scientific journals. The values were analyzed using an expansion of the t-test, considering the random effect of each study. Results showed that HAT reduced the values of ADG (654.38 vs 595.81 g/d) and FI (2.141 vs 1.875 g/d) when compared with the thermoneutral group. There was no statistical difference between the F:G values for both groups. In conclusion, high ambient temperatures negatively influence performance parameters of growing-finishing pigs when compared with those in thermoneutral conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Baumgard LH, Rhoads RP (2013) Effects of heat stress on post-absorptive metabolism and energetics. Annu Rev Anim Biosci 1:311–337

    Article  Google Scholar 

  • Becker BA, Nienabar JA, Christenson RK, Manak RC, Shazer JA, Hahn GL (2014) Peripheral concentrations of cortisol as an indicator of stress in the pig. Amer J Vet Res 46:1034–1038

    Google Scholar 

  • Berton MP, Dourado RC, Lima FBF, Rodrigues ABR, Ferrari FB, Vieira LDC, Souza PA, Borba H (2015) Growing-finishing performance and carcass yield of pigs reared in a climate controlled and uncontrolled environment. Inter J Biom 59:955–960

    Article  Google Scholar 

  • Bracke MBM (2011) Review of wallowing in pigs: description of the behaviour and its motivational basis. Appl Anim Behav Sci 132:1–13

    Article  Google Scholar 

  • Campos PHRF, Merlot E, Damon M, Noblet J, Floc’h NL (2014a) High ambient temperature alleviates the inflammatory response and growth depression in pigs challenged with Escherichia coli lipopolysaccharide. Vet J 200:404–409

    Article  CAS  Google Scholar 

  • Campos PHRF, Noblet J, Peyraud YJ, Gilbert H, Mormède P, Donzele RFMO, Donzele JL, Renaudeau D (2014b) Thermoregulatory responses during thermal acclimation in pigs divergently selected for residual feed intake. Int J Biometeorol 58:1545–1557

    PubMed  Google Scholar 

  • Collin, A (2000) Effets de la température ambiante élevée sur le métabolisme énergétique du porcelet. Thèse Ecole Nationale Supérieure Agronomie de Rennes. INRA-Unité mixte de recherches sur le veau et le porc

  • Collin A, Milgen JV, Dubois S, Noblet J (2001) Effect of high temperature on feeding behaviour and heat production in group-housed young pig. Br J Nutr 86:63–70

    Article  CAS  Google Scholar 

  • Cottrell JJ, Liu F, Hung AT, DiGiacomo K, Chauhan SS, Leury BJ, Furness JB, Celi P, Dunshea FR (2015) Nutritional strategies to alleviate heat stress in pigs. Anim Prod Sci 55:1397–1402

    Google Scholar 

  • Eurobarometer (2016) Attitudes of Europeans towards animal welfare. Special Eurobarometer Report 442. Brussels: Eurobarometer.

  • Fernandez MVS, Stoakes SK, Abuajamieh M, Seibert JT, Johnson JS, Horst EA, Rhoads RP, Baumgard LH (2015) Heat stress increases insulin sensitivity in pigs. Phys Rep 3:1–12

    Google Scholar 

  • Fraser D (2008) Toward a global perspective on farm animal welfare. Appl Anim Behav Sci 113(4):330–339

    Article  Google Scholar 

  • Ganesan S, Pearce SC, Gabler NK, Baumgard LH, Rhoads RP, Selsby JT (2018) Short-term heat stress results in increased apoptotic signaling and autophagy in oxidative skeletal muscle in Sus scrofa. J Therm Biol 72:73–80

    Article  CAS  Google Scholar 

  • Gao C, Kuklane K, Ostergren PO, Kjellstrom T (2017) Occupational heat stress assessment and protective strategies in the context of climate change. Int J Biometeorol 62:359–371

    Article  Google Scholar 

  • Giuberti G, Gallo A, Masoero F, Ferraretto LF, Hoffman PC (2013) Factors affecting starch utilization in large animal food production system: a review. J Starch 65:1–19

    Article  Google Scholar 

  • Heerwagen LR, Mørkbak MR, Denver S, Sandøe P, Christensen T (2015) The role of quality labels in market-driven animal welfare. J Agric Environ Ethics 28(1):67–84

    Article  Google Scholar 

  • Huynh TT, Aarnink AJ, Verstegen MW, Gerrits WJ, Heetkamp MJN, Kemp B, Canh TT (2005) Effects of increasing temperatures on physiological changes in pigs at different relative humidities. J Anim Sci 83:1385–1396

    Article  CAS  Google Scholar 

  • Hyun Y, Ellis M (2002) Effect of group size and feeder type on growth performance and feeding patterns in finishing pigs. J Anim Sci 80:568–574

    Article  CAS  Google Scholar 

  • Intergovrnmental Panel on Climate Changes (2014) Fifth assessment report of the intergovernmental panel on climate change. http://www.ipccch/publications_and_data/publications_and_data_reportsshtml. Accessed 19 Oct 2017

  • Johnson JS, Fernandez MVS, Patience JF, Ross JW, Gabler NK, Lucy MC, Safranski TJ, Rhoads RP, Baumgard RP (2015a) Effects of in utero heat stress on postnatal body composition in pigs: II. Finishing phase. J Anim Sci 93:82–92

    Article  CAS  Google Scholar 

  • Johnson JS, Fernandez MVS, Patience JF, Ross JW, Gabler NK, Lucy MC, Safranski TJ, Rhoads RP, Baumgard RP (2015b) Effects of in utero heat stress on postnatal body composition in pigs: I. Growing phase. J Anim Sci 93:71–81

    Article  CAS  Google Scholar 

  • Larson R, Farber B (2010) Estatística aplicada. Pearson Prentice Hall, São Paulo

    Google Scholar 

  • Li Q, Patience JF (2016) Factors involved in the regulation of feed and energy intake of pigs. Anim Feed Sci Technol:1–12

  • Moberg GP, Mench JA (2000) The biology of animal stress, basic principles and implicationsfor animal welfare. Appl Anim Behav Sci 1:1–21

    Google Scholar 

  • Morales A, Grageola F, García H, Arce N, Araiza B, Yáñez J, Cervantes M (2013) Performance, serum amino acid concentrations and expression of selected genes in pair-fed growing pigs exposed to high ambient temperatures. J Anim Physiol Anim Nutr 98:928–935

    Article  Google Scholar 

  • Olcza K, Nowicki J, Klocek C (2015) Pig behaviour in relation to weather conditions – a review. Anim Sci 15:601–610

    Article  Google Scholar 

  • Patience JF, Rossoni-Serão MC, Gutiérrez NA (2015) A review of feed efficiency in swine: biology and application. J Anim Sci Biotechnol 6:33–42

    Article  Google Scholar 

  • Quiniou N, Dubois S, Noblet J (2000a) Voluntary feed intake and feeding behaviour of group-housed growing pigs are affected by ambient temperature and body weight. Livest Prod Sci 63:245–253

    Article  Google Scholar 

  • Quiniou N, Renaudeau D, Collin A, Noblet J (2000c) Effets de l’exposition au chaud sur les caractéristiques de la prise alimentaire du porc à différents stades physiologiques. INRA Prod Anim 13:233–245

    Google Scholar 

  • Renaudeau D, Kerdoncuff M, Anais C, Gourdine JL (2008) Effect of temperature level on thermal acclimation in large white growing pigs. Animal 2:1619–1626

    Article  CAS  Google Scholar 

  • Renaudeau D, Anais C, Tel L, Gourdine JL (2010) Effect of temperature level on thermal acclimation in growing pigs estimated using a non-linear function. J Anim Sci 88:3715–3724

    Article  CAS  Google Scholar 

  • Renaudeau D, Gourdine JL, St-Pierre NR (2011) A meta-analysis of the effect of high ambient temperature on growing–finishing pigs. J Anim Sci 89:2220–2230

    Article  CAS  Google Scholar 

  • Renaudeau D, Frances G, Dubois S, Gilbert H, Noblet J (2014) Effect of thermal heat stress on energy utilization in two lines of pigs divergently selected for residual feed intake. J Anim Sci 91:1162–1175

    Article  Google Scholar 

  • Rodrigues NEB, Fialho ET, Zangeronimo MG, Cantarelli VS, Rodrigues PB, Filho MR, Minati E, Betarelli RP (2012) Reduction in the protein level and addition of oil in diets for finishing pugs under different temperatures. Rev Bras Zootec 41:1878–1883

    Article  Google Scholar 

  • Rummukainen M (2013) Climate change: changing means and changing extremes. Clim Chang 121:3–13

    Article  Google Scholar 

  • Sanz Fernandez MV, Stoakes SK, Abuajamieh M, Seibert JT, Johnson JS, Horst EA, Rhoads RP, Baumgard LH (2015) Heat stress increases insulin sensitivity in pigs. Phys Rep 12478:1–12

    Google Scholar 

  • Saraiva A, Donzele JL, Oliveira RFM, Abreu MLT, Silva FCO, Guimarães SEF, Kim SW (2015) Phosphorus requirements for 60- to 100-kg pigs selected for high lean deposition under different thermal environments. J Anim Sci 90:1499–1505

    Article  Google Scholar 

  • Silva BAN, Noblet J, Donzele JL, Oliveira RFM, Primot Y, Gourdine JL, Renaudeau D (2009) Effects of dietary protein level and amino acid supplementation on performance of mixed-parity lactating sows in a tropical humid climate1. J Anim Sci 87(12):4003–4012

    Article  CAS  Google Scholar 

  • Smith CJ, Fowler VR (1978) The importance of selection criteria and feeding regimens in the selection and improvement of pigs. Livest Prod Sci 5:415–423

    Article  Google Scholar 

  • Song R, Foster DN, Shurson GC (2014) Effects of feeding diets containing bacitracin methylene disalicylate to heat-stressed finishing pigs. J Anim Sci 89:1830–1843

    Article  Google Scholar 

  • Spoolder HAM, Aarnink AJA, Vermeer HM, Riel JV, Edwards SA (2012) Effect of increasing temperature on space requirements of group housed finishing pigs. Appl Anim Behav Sci 138:229–239

    Article  Google Scholar 

  • Terrien J, Perret M, Aujard F (2011) Behavioral thermoregulation in mammals: a review. Adap Mech Evol 4:13–22

    Google Scholar 

  • Thorslund CAH, Aaslyng MD, Lassen J (2017) Perceived importance and responsibility for market-driven pig welfare: Literature review. Meat Sci 125:37–45

    Article  Google Scholar 

  • Wolp RC, Rodrigues NEB, Zangeronimo MG, Cantarelli VS, Fialho ET, Philomeno R, Alvarenga RR, Rocha LF (2012) Soybean oil and crude protein levels for growing pigs kept under heat stress conditions. Livest Sci 147:148–153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Cristina da Fonseca de Oliveira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Fonseca de Oliveira, A.C., Vanelli, K., Sotomaior, C.S. et al. Impacts on performance of growing-finishing pigs under heat stress conditions: a meta-analysis. Vet Res Commun 43, 37–43 (2019). https://doi.org/10.1007/s11259-018-9741-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-018-9741-1

Keywords

Navigation