Skip to main content
Log in

Antibiotic susceptibility of Staphylococcus aureus isolated from subclinical bovine mastitis cases and in vitro efficacy of bacteriophage

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is an opportunistic pathogen that may cause severe infections in livestock, and represents the major cause of mastitis in dairy cows. Currently, instead of using antibiotics, new strategies are sought to reduce this clinical health problem. The aim of this study was to determine the efficacy of phage therapy to kill S. aureus strains obtained from farms located at the State of Guanajuato, México. Thirty-six S. aureus strains from cow milk with subclinical mastitis were isolated and identified, and the susceptibility to antibiotics and four phages also isolated in this work was tested. It was found that more of 90% of S. aureus isolates were not susceptible to six or more antibiotics, and 100% were resistant to penicillin, dicloxacillin, cefotaxime, ampicillin and cephalothin, and 81 and 77%, to tetracycline and cefuroxime, respectively. Fortunately, 100% of S. aureus isolates were susceptible to phages used in this work, which was detected as clear zones using specific phage. It was shown for the first time, that phages used in this study are active against pathogenic S. aureus and might be incorporated into the therapy as an important tool for the control of staphylococcal bovine mastitis, specially to antibiotic-resistant S. aureus strains isolated in farm located at the state of Guanajuato, México; and its use might be extended to other regions inside or outside the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Armon R, Kott Y (1993) A simple, rapid and sensitive presence/absence detection test for bacteriophage in drinking water. J Appl Bacteriol 74:490–496

    Article  PubMed  CAS  Google Scholar 

  • Barboza-Corona JE, de la Fuente-Salcido N, Alva-Murillo N, Ochoa-Zarzosa A, Lopez-Meza JE (2009) Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis. Vet Microbiol 138:179–183

    Article  PubMed  CAS  Google Scholar 

  • Barrera-Rivas CI, Valle-Hurtado NA, González-Lugo GM, Baizabal-Aguirre VM, Bravo-Patiño A, Cajero-Juárez M, Valdez-Alarcón JJ (2017) Bacteriophage therapy: an alternative for the treatment of Staphylococcus aureus infections in animals and animal models. In: Enany S (Ed) Frontiers in Staphylococcus aureus, InTech, https://doi.org/10.5772/65761

  • Becker SC, Roach DR, Chauhan VS, Shen Y, Foster-Frey J, Powell AM, Bauchan G, Lease RA, Mohammadi H, Harty WJ, Simmons C, Schmelcher M, Camp M, Dong S, Baker JR, Sheen TR, Doran KS, Pritchard DG, Almeida RA, Nelson DC, Marriott I, Lee JC, Donovan DM (2016) Triple-acting lytic enzyme treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep 6:25063. https://doi.org/10.1038/srep25063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boss R, Cosandey A, Luini M, Artursson K, Bardiau M, Breitenwieser F, Hehenberger E, Lam T, Mansfeld M, Michel A, Mösslacher G, Naskova J, Nelson S, Podpečan O, Raemy A, Ryan E, Salat O, Zangerl P, Steiner A, Graber HU (2015) Bovine Staphylococcus aureus: subtyping, evolution, and zoonotic transfer. J Dairy Sci 99(1):515–528. https://doi.org/10.3168/jds.2015-9589

    Article  PubMed  CAS  Google Scholar 

  • Brnakova Z, Godany JF (2005) The use of bacteriophages in eliminating Polyresistant strains of Staphylococcus aureus and Streptococcus agalactiae. Folia Microbiol 50(3):187–194

    Article  CAS  Google Scholar 

  • Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D (2007) Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother 51:2765–2773. https://doi.org/10.1128/AAC.01513-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Centers for Disease Control, Prevention (2008) Overview of health care associated MRSA. Department of Health and Human Services, U.S.

    Google Scholar 

  • Chroboczek T, Boisset S, Rasigade JP, Tristan A, Bes M, Meugnier H, Vandenesch F, Etienne J, Laurent F (2013) Clonal complex 398 methicillin susceptible Staphylococcus aureus: a frequent unspecialized human pathogen with specific phenotypic and genotypic characteristics. PLoS One 8:e68462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan J, Zeng Z, Mai K, Yang Y, Feng J, Bai Y, Sun B, Xie Q, Tong Y, Ma J (2016) Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with Trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1. Vet Microbiol 191:65–71. https://doi.org/10.1016/j.vetmic.2016.06.001

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Alvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA (2011) Methicillin resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 11:595–603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomes F, Henriques M (2016) Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol 72:377–382. https://doi.org/10.1007/s00284-015-0958-8

    Article  PubMed  CAS  Google Scholar 

  • Halasa T, Huijps K, Osteras O, Hogeveen H (2007) Economic effects of bovine mastitis and mastitis management. Vet Q 29:18–31

    Article  PubMed  CAS  Google Scholar 

  • Hamza A, Perveen S, Abbas Z, Rehman SU (2016) The lytic SA phage demonstrate bactericidal activity against mastitis causing Staphylococcus aureus. Open Life Sci 11:39–45. https://doi.org/10.1515/biol-2016-0005

    Article  CAS  Google Scholar 

  • Haq IU, Chaudhry WN, Akhtar MN, Andleeb S, Qadri I (2012) Bacteriophages and their implications on future biotechnology: a review. Virol J 9:9. https://doi.org/10.1186/1743-422X-9-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogan JS, Gonzales RN, Harmon RJ, Nickerson SC, Oliver SP, Smith KL (1999) Laboratory handbook on bovine mastitis. National Mastitis Council Inc, Madison

    Google Scholar 

  • Jensen SO, Lyon RB (2009) Genetic of antimicrobial resistance in Staphylococcus aureus. Future Microbiol 4(5):565–582

    Article  PubMed  CAS  Google Scholar 

  • Kawai K, Hayashi T, Kiku Y, Chiba T, Nagahata H, Higuchi H, Obayashi T, Itoh S, Onda K, Arai S, Sato R, Oshida T (2013) Reliability in somatic cell count measurement of clinical mastitis milk using DeLaval cell counter. Anim Sci J 84:805–807

    Article  PubMed  Google Scholar 

  • Khan MM, Nilsson AS (2015) Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One 10(3):e0118557

    Article  CAS  Google Scholar 

  • Kutter E, Sulakvelidze A (2005) Bacteriophage therapy in humans. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, pp 377–428

    Google Scholar 

  • Kwiatek M, Parasion S, Mizak L, Gryko R, Bartoszcze M, Kocik J (2012) Characterization of a bacteriophage, isolated from a cow with mastitis, that is lytic against Staphylococcus aureus strains. Arch Virol 157:225–234. https://doi.org/10.1007/s00705-011-1160-3

    Article  PubMed  CAS  Google Scholar 

  • León-Galván MF, Barboza-Corona JE, Lechuga-Arana AA, Valencia-Posadas M, Aguayo DD, Cedillo-Pelaez C, Martínez-Ortega EA, Gutierrez-Chavez AJ (2015) Molecular detection and sensitivity to antibiotics and bacteriocins of pathogens isolates from bovine mastitis in family dairy herds of central Mexico. Biomed Res Int 2015:615153–615159. https://doi.org/10.1155/2015/615153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leverstein-van Hall MA, Dierikx CM, Cohen SJ, Voets GM, van den Munckhof MP, van Essen-Zandbergen A, Platteel T, Fluit AC, Sande-Bruinsma N, Scharinga J, Bonten MJ, Mevius DJ (2011) Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect 17:873–880

    Article  PubMed  CAS  Google Scholar 

  • Makovec JA, Ruegg PL (2003) Antimicrobial resistance of bacteria isolated from dairy cow milk samples submitted for bacterial culture: 8,905 samples (1994–2001). J Am Vet Med Assoc 222:1582–1589

    Article  PubMed  CAS  Google Scholar 

  • Michael CA, Dominey-Howes D, Labbate M (2014) The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health 2:145. https://doi.org/10.3389/fpubh.2014.00145

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra AK, Rawat M, Viswas KN, Abhishek KS, Reddy M (2013) Expression and lytic efficacy assessment of the Staphylococcus aureus phage SA4 lysin gene. J Vet Sci 14:37–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Norrby SR, Nord CE, Finch R (2005) Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect Dis 5:115–119. https://doi.org/10.1016/S1473-3099(05)01283-1

    Article  PubMed  Google Scholar 

  • Pitkala A, Haveri M, Pyorala S, Myllys V, Honkanen-Buzalski T (2004) Bovine mastitis in Finland 2001—prevalence, distribution of bacteria, and antimicrobial resistance. J Dairy Sci 87:2433–2441

    Article  PubMed  CAS  Google Scholar 

  • Rushton J, Pinto Ferreira J, Stark KD (2014) Antimicrobial resistance: the use of antimicrobials. OECD Food, Agric Fish Papers 68

  • Sabour PM, Gill JJ, Lepp D, Pacan JC, Ahmed R, Dingwell R, Leslie K (2004) Molecular typing and distribution of Staphylococcus aureus isolates in eastern Canadian dairy herds. J Clin Microbiol 42:3449–3455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salgado-Ruiz TB, Rodríguez A, Gutiérrez D, Martínez B, García P, Espinoza-Ortega A, Martínez-Campos AR, Lagunas-Bernabé S, Vicente F, Arriaga-Jordán CM (2015) Molecular characterization and antimicrobial susceptibility of Staphylococcus aureus from small-scale dairy systems in the highlands of Central México. Dairy Sci Technol 95:181–196

    Article  CAS  Google Scholar 

  • Schalm O, Noorlander D (1957) Experiments and observations leading to the development of California mastitis test. J Am Vet Med Assoc 130(5):199–204

    PubMed  CAS  Google Scholar 

  • Schmelcher M, Powell AM, Becker SC, Camp MJ, Donovan DM (2012) Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol 78:2297–2305. https://doi.org/10.1128/AEM.07050-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sears PM, McCarthy KK (2003) Management and treatment of staphylococcal mastitis. Vet Clin North Am Food Anim Pract 19:171–185

    Article  PubMed  Google Scholar 

  • Sender G, Pawlik A, Korwin-Kossakowska A (2017) Current concepts on the impact of coagulase-negative staphylococci causing bovine mastitis as a threat to human and animal health – a review. Anim Sci Paper Rep 35(2):123–135

    Google Scholar 

  • Torres-Barceló C, Hochberg ME (2016) Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol 24(4):249–256

    Article  PubMed  CAS  Google Scholar 

  • Villamar AL, Olivera CE (2005) Situacion Actual y Perspectiva de la Produccion de Leche de Bovino en Mexico, Coordinacion General de Ganaderıa. Secretarıa de Agricultura, Ganaderıa, Desarrollo Rural, Pesca y Alimentacion, Mexico City, Mexico

  • Wommack KE, Williamson KE, Helton RR, Bench SR, Winget DM (2009) Methods for the isolation of viruses from environmental samples. Methods Mol Biol 501:3–14

    Article  PubMed  CAS  Google Scholar 

  • Xia G, Wolz C (2014) Phages of Staphylococcus aureus and their impact on host evolution. Infect Genet Evol 21:593–601. https://doi.org/10.1016/j.meegid.2013.04.022

    Article  PubMed  CAS  Google Scholar 

  • Zhang QG, Buckling A (2012) Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms. Evol Appl 5:575–582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Li Y, Bao H, Wei R, Zhou Y, Zhang H, Wang R (2016) Population structure and antimicrobial profile of Staphylococcus aureus strains associated with bovine mastitis in China. Microb Pathog 97:103e109

    Google Scholar 

Download references

Acknowledgments

The authors thank students and colleagues of University of Guanajuato and Promoción de la Cultura y la Educación Superior del Bajío, A.C for their technical support during this study. They appreciate the contribution of the producers to this study as well.

Funding

This research was supported by Grants from CONACyT 2017 (PEI-241362) and Consultoría en Biotecnología, Bioingeniería y Servicios Asociados, S.A de C.V. (COBBYSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abner J. Gutiérrez-Chávez.

Ethics declarations

Animal studies

Animal studies were carried out humanely and according to national and international Animal Care and Use Committee protocols.

Conflict of interests

All the authors declare no conflict of interest regarding this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varela-Ortiz, D.F., Barboza-Corona, J.E., González-Marrero, J. et al. Antibiotic susceptibility of Staphylococcus aureus isolated from subclinical bovine mastitis cases and in vitro efficacy of bacteriophage. Vet Res Commun 42, 243–250 (2018). https://doi.org/10.1007/s11259-018-9730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-018-9730-4

Keywords

Navigation