Herbivory by aboveground insects impacts plant root morphological traits

Abstract

Aboveground herbivory induces physiological responses, like the release of belowground chemical defense and storage of secondary metabolites, as well as physical responses in plants, like increased root biomass production. However, studies on effects of aboveground herbivory on root morphology are scarce and until now no study tested herbivory effects under natural conditions for a large set of plant species. Therefore, in a field experiment on plant–soil interactions, I investigated the effect of aboveground insect herbivory on root morphological traits of 20 grassland plant species. For 9 of the 20 species, all individuals showed shoot damage in the presence of insect herbivores, but no damage in insect herbivore exclusions. In these 9 species root biomass increased and root morphological traits changed under herbivory towards thinner roots with increased specific root surface. In contrast, the remaining species did not differ in the number of individuals damaged, root biomass nor morphological traits with herbivores present vs. absent. The fact that aboveground herbivory resulted in thinner roots with increased specific root surface area for all species in which the herbivore exclusion manipulation altered shoot damage might indicate that plants increase nutrient uptake in response to herbivory. However, more importantly, results provide empirical evidence that aboveground herbivory impacts root morphological traits of plants. As these traits are important for the occupation of soil space, uptake processes, decomposition and interactions with soil biota, results suggest that herbivory-induced changes in root morphology might be of importance for plant–soil feedbacks and plant–plant competition.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Branson DH, Sword GA (2009) Grasshopper herbivory affects native plant diversity and abundance in a grassland dominated by the exotic grass Agropyron cristatum. Restor Ecol 17:89–96. https://doi.org/10.1111/j.1526-100x.2007.00343.x

    Article  Google Scholar 

  2. Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30:1867–1878. https://doi.org/10.1016/S0038-0717(98)00069-8

    CAS  Article  Google Scholar 

  3. Bardgett RD, Mommer L, de Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699. https://doi.org/10.1016/j.tree.2014.10.006

    Article  PubMed  Google Scholar 

  4. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  5. Baxendale C, Orwin KH, Poly F, Pommier T, Bardgett RD (2014) Are plant–soil feedback responses explained by plant traits? New Phytol 204:408–423. https://doi.org/10.1111/nph.12915

    Article  PubMed  Google Scholar 

  6. Bergmann J, Verbruggen E, Heinze J, Xiang D, Chen B, Joshi J, Rillig MC (2016) The interplay between soil structure, roots, and microbiota as a determinant of plant-soil feedback. Ecol Evol 6:7633–7644. https://doi.org/10.1002/ece3.2456

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bevill RL, Louda SM, Stanforth LM (1999) Protection from natural enemies in managing rare plant species. Conserv Biol 13:1323–1331

    Article  Google Scholar 

  8. Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624. https://doi.org/10.1016/j.tree.2005.08.006

    Article  PubMed  Google Scholar 

  9. Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28:545–570. https://doi.org/10.1146/annurev.ecolsys.28.1.545

    Article  Google Scholar 

  10. Crawley MJ (1989) Insect herbivores and plant population dynamics. Annu Rev Entomol 34:531–564. https://doi.org/10.1146/annurev.en.34.010189.002531

    Article  Google Scholar 

  11. DeLong JR, Fry EL, Veen GF, Kardol P (2019) Why are plant-soil feedbacks so unpredictable, and what to do about it? Func Ecol 33:118–128. https://doi.org/10.1111/1365-2435.13232

    Article  Google Scholar 

  12. Frank DA, Pontes AW, Maine EM, Caruana J, Raina R, Raina S, Fridley JD (2010) Grassland root communities: species distributions and how they are linked to aboveground abundance. Ecology 91:3201–3209. https://doi.org/10.1890/09-1831.1

    Article  PubMed  Google Scholar 

  13. Franzke A, Unsicker SB, Specht J, Köhler G, Weisser WW (2010) Being a generalist herbivore in a diverse world: how do diets from different grasslands influence food plant selection and fitness of the grasshopper Chorthippus parallelus? Ecol Entomol 35:126–138. https://doi.org/10.1111/j.1365-2311.2009.01168.x

    Article  Google Scholar 

  14. Gustafson DJ, Casper BB (2004) Nutrient addition affects AM fungal performance and expression of plant/fungal feedback in three serpentine grasses. Plant Soil 259:9–17. https://doi.org/10.1023/B:PLSO.0000020936.56786.a4

    CAS  Article  Google Scholar 

  15. Heinze J, Sitte M, Schindhelm A, Wright J, Joshi J (2016) Plant-soil feedbacks: a comparative study on the relative importance of soil-feedbacks in the greenhouse vs. field. Oecologia 181:559–569. https://doi.org/10.1007/s00442-016-3591-8

    Article  PubMed  Google Scholar 

  16. Heinze J, Joshi J (2018) Plant-soil feedback effects can be masked by aboveground herbivory under natural field conditions. Oecologia 186:235–246. https://doi.org/10.1007/s00442-017-3997-y

    Article  PubMed  Google Scholar 

  17. Heinze J, Simons NK, Seibold S, Wacker A, Weithoff G, Gossner MM, Prati D, Bezemer TM, Joshi J (2019) The relative importance of plant-soil feedbacks for plant-species performance increases with decreasing intensity of herbivory. Oecologia 190:651–664. https://doi.org/10.1007/s00442-019-04442-9

    Article  PubMed  Google Scholar 

  18. Heinze J, Wacker A, Kulmatiski A (2020) Plant-soil feedback effects altered by aboveground herbivory explain plant species abundance in the landscape. Ecology. https://doi.org/10.1002/ecy.3023

    Article  PubMed  Google Scholar 

  19. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66. https://doi.org/10.1146/annurev.arplant.59.032607.092825

    CAS  Article  PubMed  Google Scholar 

  20. Johnson SN, Erb M, Hartley SE (2016a) Roots under attack: contrasting plant responses to below- and aboveground insect herbivory. New Phytol 210:413–418. https://doi.org/10.1111/nph.13807

    Article  PubMed  Google Scholar 

  21. Johnson MTJ, Bertrand JA, Turcotte MM (2016b) Precision and accuracy in quantifying herbivory. Ecol Entomol 41:112–121. https://doi.org/10.1111/een.12280

    Article  Google Scholar 

  22. Karolewski P, Zadworny M, Mucha J, Napierala-Filipiak A, Oleksyn J (2010) Link between defoliation and light treatments on root vitality of five understory shrubs with different resistance to insect herbivory. Tree Physiol 30:969–978. https://doi.org/10.1093/treephys/tqp060

    Article  PubMed  Google Scholar 

  23. Kulmatiski A, Beard KH, Stevens JR, Cobbold SM (2008) Plant-soil feedbacks: a meta-analytic review. Ecol Lett 11:980–992. https://doi.org/10.1111/j.1461-0248.2008.01209.x

    Article  PubMed  Google Scholar 

  24. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest: tests in linear mixed effects models. J Stat Softw 82:1–26

    Article  Google Scholar 

  25. Lee S, Sergeeva LI, Vreughenhil D (2018) Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture. J Int Plant Biol 60:292–309. https://doi.org/10.1111/jipb.12617

    CAS  Article  Google Scholar 

  26. Leuschner C, Gebel S, Rose L (2013) Root trait responses of six temperate grassland species to intensive mowing and NPK fertilization: a field study in a temperate grassland. Plant Soil 373:687–698. https://doi.org/10.1007/s11104-013-1836-4

    CAS  Article  Google Scholar 

  27. Lymperopoulos P, Msanne J, Rabara R (2018) Phytochrome and phytohormones: working in tandem for plant growth and development. Front Plant Sci 9:1037. https://doi.org/10.3389/fpls.2018.01037

    Article  PubMed  PubMed Central  Google Scholar 

  28. Manning P, Morrison SA, Bonkowski M, Bardgett RD (2008) Nitrogen enrichment modifies plant community structure via changes to plant-soil feedback. Oecologia 157:661–673. https://doi.org/10.1007/s00442-008-1104-0

    CAS  Article  PubMed  Google Scholar 

  29. Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and populations growth. Proc R Soc B 273:2575–2584. https://doi.org/10.1098/rspb.2006.3587

    Article  PubMed  Google Scholar 

  30. Maron JL (1998) Insect herbivory above- and belowground: individual and joint effects on plant fitness. Ecology 79:1281–1293. https://doi.org/10.1890/0012-9658(1998)079[1281:IHAABI]2.0.CO;2

    Article  Google Scholar 

  31. McNickle GG, Evans WD (2018) Toleration games: compensatory growth by plants in response to enemy attack is an evolutionarily stable strategy. AoB Plants 10:ply035. https://doi.org/10.1093/aobpla/ply035

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular myccorhizas. Trends Ecol Evol 10:407–411. https://doi.org/10.1016/S0169-5347(00)89157-0

    CAS  Article  PubMed  Google Scholar 

  33. Palmisano S, Fox LR (1997) Effects of mammal and insect herbivory on population dynamics of a native Californian thistle, Cirsium occidentale. Oecologia 111:413–421. https://doi.org/10.1007/s04420050253

    Article  PubMed  Google Scholar 

  34. Pfisterer A, Diemer M, Schmid B (2003) Dietary shift and lowered biomass gain of a generalist herbivore in species-poor experimental plant communities. Oecologia 135:234–241. https://doi.org/10.1007/s00443-002-1169-0

    Article  PubMed  Google Scholar 

  35. Pastore AI, Russell FL (2012) Insect herbivore effects on resource allocation to shoots and roots in Lespedeza capitata. Plant Ecol 213:843–851. https://doi.org/10.1007/s11258-012-0046-0

    Article  Google Scholar 

  36. R Developmental Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  37. Ravenek JM, Mommer L, Visser EJW, van Ruijven J, van der Paauw JW, Smit-Tiekstra A, de Caluwe H, de Kroon H (2016) Linking root traits and competitive success in grassland species. Plant Soil 407:39–53. https://doi.org/10.1007/s11104-016-2843-z

    CAS  Article  Google Scholar 

  38. Russell FL, Rose KE, Louda SM (2010) Seed availability and insect herbivory limit recruitment and adult density of native tall thistle. Ecology 91:3081–3093. https://doi.org/10.1890/09-1101.1

    Article  PubMed  Google Scholar 

  39. Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265. https://doi.org/10.1007/BF00010478

    CAS  Article  Google Scholar 

  40. Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct Ecol 10:717–723. https://doi.org/10.2307/2390506

    Article  Google Scholar 

  41. Sarquis A, Pestoni S, Cingolani AM, Harduindeguy NP (2019) Physiognomic changes in response to herbivory increase carbon allocation to roots in a temperate grassland of central Argentina. Plant Ecol 220:699–709. https://doi.org/10.1007/s11258-019-00945-w

    Article  Google Scholar 

  42. Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739. https://doi.org/10.1111/j.1365-2745.2006.01124.x

    Article  Google Scholar 

  43. Semchemko M, Lepik A, Abakumova M, Zobel K (2018) Different sets of belowground traits predict the ability of plant species to suppress and tolerate their competitors. Plant Soil 424:157–169. https://doi.org/10.1007/s11104-017-3282-1

    CAS  Article  Google Scholar 

  44. Smith AH, Pinkard EA, Stone C, Battaglia M, Mohammed CL (2005) Precision and accuracy of pest and pathogen damage assessment in young Eucalytus plantations. Environ Monit Assess 111:243–256. https://doi.org/10.1007/s10661-005-8222-5

    CAS  Article  PubMed  Google Scholar 

  45. Thorne MA, Frank DA (2009) The effects of clipping and soil moisture on leaf and root morphology and root respiration in two temperate and two tropical grasses. Plant Ecol 200:205–215. https://doi.org/10.1007/s11258-008-9445-7

    Article  Google Scholar 

  46. Tiiva P, Julkunen-Tiitto R, Häikiö E, Kasurinen A (2019) Belowground responses of scots pine (Pinus sylvestris) seedlings to experimental warming, moderate nitrogen addition, and bark herbivory. Can J For Res 49:647–660. https://doi.org/10.1139/cjfr-2018-0099

    CAS  Article  Google Scholar 

  47. Veen GF, Fry E, ten Hooven F, Kardol P, Morrien E, DeLong JR (2019) The role of plant litter in driving plant-soil feedbacks. Front Environ Sci 7:168. https://doi.org/10.3389/fenvs.2019.00168

    Article  Google Scholar 

  48. Wilschut RA, van der Putten WH, Garbeva P, Harkes P, Konings W, Kulkarni P, Martens H, Geisen S (2019) Root traits and belowground herbivores relate to plant-soil feedback variations among species. Nat Commun 10:1564. https://doi.org/10.1038/s41467-019-09615-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Wright IJ, Westoby M (1999) Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. J Ecol 87:85–97. https://doi.org/10.1046/j.1365-2745.1999.00330.x

    Article  Google Scholar 

Download references

Acknowledgements

I thank Anne Schindhelm and Joana Bergmann for help and assistance with the root trait measurements, Frank Warschau, Jürgen Augustin and Doreen Schreier for help in the field, Gabriele Gehrmann for help with the soil analysis, Ronald Wille and Stefan Saumweber for technical support for the measurements of abiotic conditions and the Botanical Garden Potsdam for their cooperation. Furthermore, I would like to thank the editor and the two reviewers for helpful comments on earlier versions of the manuscript.

Author information

Affiliations

Authors

Contributions

JH conceived the idea, designed the study, performed the experiment, collected and analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Johannes Heinze.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Leland Russell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 504 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heinze, J. Herbivory by aboveground insects impacts plant root morphological traits. Plant Ecol 221, 725–732 (2020). https://doi.org/10.1007/s11258-020-01045-w

Download citation

Keywords

  • Herbivory
  • Root traits
  • Specific root length
  • Specific root surface area
  • Plant–soil feedback
  • Competition