Is range expansion of introduced Scotch broom (Cytisus scoparius) in Denmark limited by winter cold tolerance?

Abstract

Scotch broom (Cytisus scoparius) is a global invasive species disrupting native species and habitats in several parts of the world. Its natural distribution spans across Europe, but seeds have also been transferred between countries, mixing plants of different genetic origins. In Denmark, Scotch broom consists of two gene pools: one is found in relatively small populations and is considered native; the other one is presumably introduced and is spreading as a noxious weed. To assess climate thresholds controlling the geographic ranges of the two gene pools, we evaluated seasonal changes in freezing tolerance (electrolyte leakage) and underlying variations in carbohydrate metabolism (HPLC) and water status of genetically different source populations representing the two gene pools. The data reveal that the introduced type is less freezing tolerant than the native type with differences being greatest in early autumn and when plants are most cold hardy, lending support to the hypothesis that insufficient freezing tolerance currently limits range expansion of the introduced Danish Scotch broom. In both gene pools, parallel increases in freezing tolerance and concentrations of sucrose and raffinose and decreasing levels of starch indicate the mobilization of soluble sugars from storage carbohydrates to achieve maximum freezing tolerance. However, genotypic differences in freezing tolerance are not explained by differences in carbohydrate metabolism, but may be related to different water contents. The observed low temperature limit for the introduced C. scoparius could provide valuable information for building process-based species distribution models predicting its geographic distribution and range shift following climate change.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Améglio T, Cochard H, Ewers FW (2001) Stem diameter variations and cold hardiness in walnut trees. J Exp Bot 52:2135–2142. https://doi.org/10.1093/jexbot/52.364.2135

    Article  PubMed  Google Scholar 

  2. Andersen UB, Kjaer KH, Erban A, Alpers J, Hincha DK, Kopka J, Zuther E, Pagter M (2017) Impact of seasonal warming on overwintering and spring phenology of blackcurrant. Environ Exp Bot 140:96–109. https://doi.org/10.1016/j.envexpbot.2017.06.005

    Article  Google Scholar 

  3. Berger S, Söhlke G, Walther GR, Pott R (2007) Bioclimatic limits and range shifts of cold-hardy evergreen broad-leaved species at their northern distributional limit in Europe. Phytocoenologia 37:523–539. https://doi.org/10.1127/0340-269X/2007/0037-0523

    Article  Google Scholar 

  4. Böcher TW, Larsen K (1958) Secondary polyploidy and ecotypical differentation in Sarthamnus scoparius. New Phytol 57:311–317. https://doi.org/10.1111/j.1469-8137.1958.tb05320.x

    Article  Google Scholar 

  5. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11. https://doi.org/10.1007/s00442-005-0070-z

    Article  PubMed  Google Scholar 

  6. Brandes U, Furevik BB, Nielsen LR, Kjær ED, Rosef L, Fjellheim S (2019) Introduction history and population genetics of intracontinental scotch broom (Cytisus scoparius) invasion. Divers Distrib 25:1773–1786. https://doi.org/10.1111/ddi.12979

    Article  Google Scholar 

  7. Brønnum P (2005) Assessment of seedling storability of Quercus robur and Pinus sylvestris. Scand J For Res 20:26–35. https://doi.org/10.1080/02827580410019526

    Article  Google Scholar 

  8. Bruelheide H, Heinemeyer A (2002) Climatic factors controlling the eastern and altitudinal distribution boundary of Digitalis purpurea L. in Germany. Flora 197:475–490. https://doi.org/10.1078/0367-2530-00064

    Article  Google Scholar 

  9. Caño L, Escarré J, Fleck I, Blanco-Moreno JM, Sans FX (2008) Increased fitness and plasticity of an invasive species in its introduced range: A study using Senecio pterophorus. J Ecol 96:468–476. https://doi.org/10.1111/j.1365-2745.2008.01363.x

    Article  Google Scholar 

  10. Charrier G, Lacointe A, Améglio T (2018) Dynamic modeling of carbon metabolism during the dormant period accurately predicts the changes in frost hardiness in walnut trees Juglans regia L. Front Plant Sci 9:1746. https://doi.org/10.3389/fpls.2018.01746

    Article  PubMed  PubMed Central  Google Scholar 

  11. Charrier G, Poirier M, Bonhomme M, Lacointe A, Améglio T (2013) Frost hardiness in walnut trees (Juglans regia L.): How to link physiology and modelling? Tree Physiol 33:1229–1241. https://doi.org/10.1093/treephys/tpt090

    CAS  Article  PubMed  Google Scholar 

  12. Clements DR, Ditommaso A (2011) Climate change and weed adaptation: Can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240. https://doi.org/10.1111/j.1365-3180.2011.00850.x

    Article  Google Scholar 

  13. Courtois P, Figuieres C, Mulier C, Weill J (2018) A cost–benefit approach for prioritizing invasive species. Ecol Econ 146:607–620. https://doi.org/10.1016/j.ecolecon.2017.11.037

    Article  Google Scholar 

  14. Cox SE, Stushnoff C (2011) Temperature-related shifts in soluble carbohydrate content during dormancy and cold acclimation in Populus tremuloides. Can J For Res 31:730–737. https://doi.org/10.1139/x00-206

    Article  Google Scholar 

  15. Crowe JH, Carpenter JF, Crowe LM (2002) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103. https://doi.org/10.1146/annurev.physiol.60.1.73

    Article  Google Scholar 

  16. Dhuli P, Rohloff J, Strimbeck GR (2014) Metabolite changes in conifer buds and needles during forced bud break in Norway spruce (Picea abies) and European silver fir (Abies alba). Front Plant Sci 5:1–13. https://doi.org/10.3389/fpls.2014.00706

    Article  Google Scholar 

  17. Downey PO, Smith JMB (2000) Demography of the invasive shrub Scotch broom (Cytisus scoparius) at Barrington Tops, New South Wales: Insights for management. Austral Ecol 25:477–485. https://doi.org/10.1046/j.1442-9993.2000.01083.x

    Article  Google Scholar 

  18. Ebeling SK, Welk E, Auge H, Bruelheide H (2008) Predicting the spread of an invasive plant: Combining experiments and ecological niche model. Ecography 31:709–719. https://doi.org/10.1111/j.1600-0587.2008.05470.x

    Article  Google Scholar 

  19. Fox F, Weisberg S (2019) An {R} companion to applied regression, third edition. Thousand Oaks CA: Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/

  20. Gu L, Hanson PJ, Mac PW, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 Eastern US spring freeze: Increased cold damage in a warming world? Bioscience 58:253–262. https://doi.org/10.1641/B580311

    Article  Google Scholar 

  21. Gusta LV, Trischuk R, Weiser CJ (2005) Plant cold acclimation: The role of abscisic acid. J Plant Growth Regul 24:308–318. https://doi.org/10.1007/s00344-005-0079-x

    CAS  Article  Google Scholar 

  22. Guy C (2003) Freezing tolerance of plants: current understanding and selected emerging concepts. Can J Bot 81:1216–1223. https://doi.org/10.1139/B03-130

    CAS  Article  Google Scholar 

  23. Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK (2008) Metabolomics of temperature stress. Physiol Plant 132:220–235. https://doi.org/10.1111/j.1399-3054.2007.00999.x

    CAS  Article  Google Scholar 

  24. Hannah M, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112. https://doi.org/10.1104/pp.106.081141

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Haubensak KA, Parker IM (2004) Soil changes accompanying invasion of the exotic shrub Cytisus scoparius in glacial outwash prairies of western Washington [USA]. Plant Ecol 175:71–79. https://doi.org/10.1023/B:VEGE.0000048088.32708.58

    Article  Google Scholar 

  26. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543. https://doi.org/10.1111/j.1523-1739.2008.00951.x

    Article  PubMed  Google Scholar 

  27. Horton MW, Willems G, Sasaki E, Koornneef M, Nordborg M (2016) The genetic architecture of freezing tolerance varies across the range of Arabidopsis thaliana. Plant Cell Environ 39:2570–2579. https://doi.org/10.1111/pce.12812

    CAS  Article  Google Scholar 

  28. Hufkens K, Friedl MA, Keenan TF, Sonnentag O, Bailey A, O’Keefe J, Richardson AD (2012) Ecological impacts of a widespread frost event following early spring leaf-out. Glob Chang Biol 18:2365–2377. https://doi.org/10.1111/j.1365-2486.2012.02712.x

    Article  Google Scholar 

  29. Ibáñez I, Silander JA, Allen JM, Treanor SA, Wilson A (2009) Identifying hotspots for plant invasions and forecasting focal points of further spread. J Appl Ecol 46:1219–1228. https://doi.org/10.1111/j.1365-2664.2009.01736.x

    Article  Google Scholar 

  30. IPCC CU (2014) Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1–1535). Cambridge: Cambridge University Press. Doi: 10.1017/CBO9781107415324

  31. Junttila O, Kaurin Å (1990) Environmental control of cold acclimation in Salix pentandra. Scand J For Res 5:1–4. https://doi.org/10.1080/02827589009382605

    Article  Google Scholar 

  32. Kalberer SR, Leyva-Estrada N, Krebs SL, Arora R (2007) Frost dehardening and rehardening of floral buds of deciduous azaleas are influenced by genotypic biogeography. Environ Exp Bot 59:264–275. https://doi.org/10.1016/j.envexpbot.2006.02.001

    Article  Google Scholar 

  33. Kalberer SR, Wisniewski M, Arora R (2006) Deacclimation and reacclimation of cold-hardy plants: Current understanding and emerging concepts. Plant Sci 171:3–16. https://doi.org/10.1016/j.plantsci.2006.02.013

    CAS  Article  Google Scholar 

  34. Kang M, Lowe A, Buckley Y (2007) Isolation and characterization of polymorphic microsatellite loci for the invasive plant Cytisus scoparius. Mol Ecol Notes 7:100–102. https://doi.org/10.1111/j.1471-8286.2006.01543.x

    CAS  Article  Google Scholar 

  35. Karlson DT, Zeng Y, Stirm VE, Joly RJ, Ashworth EN (2003) Photoperiodic regulation of a 24-kD dehydrin-like protein in red-osier dogwood (Cornus sericea L.) in relation to freeze-tolerance. Plant Cell Physiol 44:25–34. https://doi.org/10.1093/pcp/pcg006

    CAS  Article  PubMed  Google Scholar 

  36. Kasuga J, Arakawa K, Fujikawa S (2007) High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. New Phytol 174:569–579. https://doi.org/10.1111/j.1469-8137.2007.02025.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Katz DSW, Ibáñez I (2016) Biotic interactions with natural enemies do not affect potential range expansion of three invasive plants in response to climate change. Biol Invasions 18:3351–3363. https://doi.org/10.1007/s10530-016-1229-8

    Article  Google Scholar 

  38. Kearney M, Porter W (2009) Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350. https://doi.org/10.1111/j.1461-0248.2008.01277.x

    Article  PubMed  Google Scholar 

  39. Kjær ED, Myking T, Buttenschøn RM, Hansen JK (2013) Introduction of exotic tree species to meet challenges from climate change in Nordic forestry – a risky business? Report to SNS. Available from:https://nordicforestresearch.org/wp-content/uploads/2017/07/Invasive-species_Scientific-report.pdf

  40. Kjaer KH, Poiŕ R, Ottosen CO, Walter A (2012) Rapid adjustment in chrysanthemum carbohydrate turnover and growth activity to a change in time-of-day application of light and daylength. Funct Plant Biol 39:639–649. https://doi.org/10.1071/FP11289

    CAS  Article  PubMed  Google Scholar 

  41. Kjaer KH, Winde J, Petersen KK, Yde CC, Pagter M (2019) Cold deacclimation mechanisms and reacclimation potential in flower buds of blackcurrant (Ribes nigrum). Physiol Plant 167:111–126. https://doi.org/10.1111/ppl.12873

    CAS  Article  PubMed  Google Scholar 

  42. Kodra E, Steinhaeuser K, Ganguly AR (2011) Persisting cold extremes under 21st-century warming scenarios. Geophys Res Lett 38:1–5. https://doi.org/10.1029/2011GL047103

    Article  Google Scholar 

  43. Kreyling J, Schmid S, Aas G (2015) Cold tolerance of tree species is related to the climate of their native ranges. J Biogeogr 42:156–166. https://doi.org/10.1111/jbi.12411

    Article  Google Scholar 

  44. Kreyling J, Wiesenberg GLB, Thiel D, Wohlfart C, Huber G, Walter J, Jentsch A, Konnert M, Beierkuhnlein C (2012) Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Environ Exp Bot 78:99–108. https://doi.org/10.1016/j.envexpbot.2011.12.026

    Article  Google Scholar 

  45. Li C, Puhakainen T, Welling A, Viherä-Aarnio A, Ernstsen A, Junttila O, Heino P, Palva ET (2002) Cold acclimation in silver birch (Betula pendula). Development of freezing tolerance in different tissues and climatic ecotypes. Physiol Plant 116:478–488. https://doi.org/10.1034/j.1399-3054.2002.1160406.x

    CAS  Article  Google Scholar 

  46. Li S, Yang Y, Zhang Q, Liu N, Xu Q, Hu L (2018) Differential physiological and metabolic response to low temperature in two zoysiagrass genotypes native to high and low latitude. PLoS ONE 13:e0198885. https://doi.org/10.1371/journal.pone.0198885

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Menon M, Barnes WJ, Olson MS (2015) Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season. New Phytol 207:710–722. https://doi.org/10.1111/nph.13381

    CAS  Article  PubMed  Google Scholar 

  48. Menzel A, Seifert H, Estrella N (2011) Effects of recent warm and cold spells on European plant phenology. Int J Biometeorol 55:921–932. https://doi.org/10.1007/s00484-011-0466-x

    Article  PubMed  Google Scholar 

  49. Nielsen LR, Brandes U, Dahl Kjaer E, Fjellheim S (2016) Introduced Scotch broom (Cytisus scoparius) invades the genome of native populations in vulnerable heathland habitats. Mol Ecol 25:2790–2804. https://doi.org/10.1111/mec.13666

    CAS  Article  Google Scholar 

  50. Ouyang L, Leus L, De Keyser E, Van Labeke MC (2019) Seasonal changes in cold hardiness and carbohydrate metabolism in four garden rose cultivars. J Plant Physiol 232:188–199. https://doi.org/10.1016/j.jplph.2018.12.001

    CAS  Article  PubMed  Google Scholar 

  51. Pagter M, Andersen UB, Andersen L (2015) Winter warming delays dormancy release, advances budburst, alters carbohydrate metabolism and reduces yield in a temperate shrub. AoB Plants. https://doi.org/10.1093/aobpla/plv024

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pagter M, Hausman JF, Arora R (2011a) Deacclimation kinetics and carbohydrate changes in stem tissues of Hydrangea in response to an experimental warm spell. Plant Sci 180:140–148. https://doi.org/10.1016/j.plantsci.2010.07.009

    CAS  Article  PubMed  Google Scholar 

  53. Pagter M, Jensen CR, Petersen KK, Liu F, Arora R (2008) Changes in carbohydrates, ABA and bark proteins during seasonal cold acclimation and deacclimation in Hydrangea species differing in cold hardiness. Physiol Plant 134:473–485. https://doi.org/10.1111/j.1399-3054.2008.01154.x

    CAS  Article  PubMed  Google Scholar 

  54. Pagter M, Kristoffersen A, Brønnum P, Jensen M (2010) Phenotypic differences in development of cold hardiness in three latitudinal populations of Acer platanoides L. Scand J For Res 25:412–420. https://doi.org/10.1080/02827581.2010.512872

    Article  Google Scholar 

  55. Pagter M, Lefèvre I, Arora R, Hausman JF (2011b) Quantitative and qualitative changes in carbohydrates associated with spring deacclimation in contrasting Hydrangea species. Environ Exp Bot 72:358–367. https://doi.org/10.1016/j.envexpbot.2011.02.019

    CAS  Article  Google Scholar 

  56. Pagter M, Williams M (2011) Frost dehardening and rehardening of Hydrangea macrophylla stems and buds. HortScience 46:1121–1126. https://doi.org/10.21273/HORTSCI.46.8.1121

    Article  Google Scholar 

  57. Park I, DeWalt SJ, Siemann E, Rogers WE (2012) Differences in cold hardiness between introduced populations of an invasive tree. Biol Invasions 14:2029–2038. https://doi.org/10.1007/s10530-012-0209-x

    Article  Google Scholar 

  58. Peterson DJ, Prasad R (1998) The biology of Canadian weeds. 109. Cytisus scoparius (L.) Link. Can J Plant Sci 78:498–504. https://doi.org/10.4141/P97-079

    Article  Google Scholar 

  59. Petitpierre B, McDougall K, Seipel T, Broennimann O, Guisan A, Kueffer C (2016) Will climate change increase the risk of plant invasions into mountains? Ecol Appl 26:530–544. https://doi.org/10.1890/14-1871

    Article  PubMed  Google Scholar 

  60. Potter KJB, Kriticos DJ, Watt MS, Leriche A (2009) The current and future potential distribution of Cytisus scoparius: A weed of pastoral systems, natural ecosystems and plantation forestry. Weed Res 49:271–282. https://doi.org/10.1111/j.1365-3180.2009.00697.x

    Article  Google Scholar 

  61. Rapacz M, Jurczyk B, Sasal M (2017) Deacclimation may be crucial for winter survival of cereals under warming climate. Plant Sci 256:5–15. https://doi.org/10.1016/j.plantsci.2016.11.007

    CAS  Article  PubMed  Google Scholar 

  62. Ravn HP (2015) Invasive arter – en tematisk udredning. Department of Geosciences and Natural Ressource Management, University of Copenhagen (in Danish). Report available from: https://naturstyrelsen.dk/media/136590/invasive-arter.pdf

  63. Rees M, Paynter Q (1997) Biological control of Scotch broom: Modelling the determinants of abundance and the potential impact of introduced insect herbivores. J Appl Ecol 34:1203–1221. https://doi.org/10.2307/2405232

    Article  Google Scholar 

  64. Renaut J, Lutts S, Hoffmann L, Hausman JF (2004) Responses of poplar to chilling temperatures: Proteomic and physiological aspects. Plant Biol 6:81–90. https://doi.org/10.1055/s-2004-815733

    CAS  Article  PubMed  Google Scholar 

  65. R Core Team (2019) R: A language and environment for statistical computing. R Foundation for

  66. Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  67. Rodrigo J (2000) Spring frosts in deciduous fruit trees. Morphological damage and flower hardiness. Sci Hortic (Amsterdam) 85:155–173. https://doi.org/10.1016/S0304-4238(99)00150-8

    Article  Google Scholar 

  68. Rosenmeier L, Kjær ED, Nielsen LR (2013) The Scotch broom, Cytisus scoparius (Fabaceae), a paradox in Denmark - an invasive plant or endangered native species? Bot J Linn Soc 171:429–440. https://doi.org/10.1111/j.1095-8339.2012.01319.x

    Article  Google Scholar 

  69. Shin H, Oh Y, Kim D (2015) Differences in cold hardiness, carbohydrates, dehydrins and related gene expressions under an experimental deacclimation and reacclimation in Prunus persica. Physiol Plant 154:485–499. https://doi.org/10.1111/ppl.12293

    CAS  Article  PubMed  Google Scholar 

  70. Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584. https://doi.org/10.1146/annurev

    CAS  Article  Google Scholar 

  71. Sultan SE, Horgan-Kobelski T, Nichols LM, Riggs CE, Waples RK (2013) A resurrection study reveals rapid adaptive evolution within populations of an invasive plant. Evol Appl 6:266–278. https://doi.org/10.1111/j.1752-4571.2012.00287.x

    Article  PubMed  Google Scholar 

  72. te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešova M, Pyšek P (2012) The more the better? The role of polyploid in facilitating plant invasions. Ann Bot 109:19–45. https://doi.org/10.1093/aob/mcr277

    Article  Google Scholar 

  73. Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc Lond B Biol Sci 365:2025–2034. https://doi.org/10.1098/rstb.2010.0037

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x

    Article  PubMed  Google Scholar 

  75. Vitasse Y, Lenz A, Körner C (2014) The interaction between freezing tolerance and phenology in temperate deciduous trees 5:1–12. https://doi.org/10.3389/fpls.2014.00541

    Article  Google Scholar 

  76. Vitousek PM, D’Antonio CM, Loope LL, Rejmánek M, Westbrooks R (1997) Introduced species: A significant component of human-caused global change. N Z J Ecol 21:1–16. https://doi.org/10.1890/02-0571

    Article  Google Scholar 

  77. Vitra A, Lenz A, Vitasse Y (2017) Frost hardening and dehardening potential in temperate trees from winter to budburst. New Phytol 1:113–123. https://doi.org/10.1111/nph.14698

    Article  Google Scholar 

  78. Weiser CJ (1970) Cold resistance and injury in woody plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science 169:1269–1278. https://doi.org/10.1126/science.169.3952.1269

    CAS  Article  PubMed  Google Scholar 

  79. Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19. https://doi.org/10.1139/gen-42-1-9

    CAS  Article  PubMed  Google Scholar 

  80. Winde J, Andersen UB, Kjaer KH, Pagter M (2017) Variation in freezing tolerance, water content and carbohydrate metabolism of floral buds during deacclimation of contrasting blackcurrant cultivars. Acta Physiol Plant 39:201. https://doi.org/10.1007/s11738-017-2503-9

    CAS  Article  Google Scholar 

  81. Xin Z, Browse J (2000) Cold comfort farm: The acclimation of plants to freezing temperatures. Plant, Cell Environ 23:893–902. https://doi.org/10.1046/j.1365-3040.2000.00611.x

    Article  Google Scholar 

  82. Zuther E, Juszczak I, Ping Lee Y, Baier M, Hincha DK (2015) Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions. Sci Rep 5:12199. https://doi.org/10.1038/srep12199

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Zuther E, Schulz E, Childs LH, Hincha DK (2012) Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant, Cell Environ 35:1860–1878. https://doi.org/10.1111/j.1365-3040.2012.02522.x

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Majken Pagter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by William E. Rogers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 177 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Winde, J., Sønderkær, M., Nielsen, K.L. et al. Is range expansion of introduced Scotch broom (Cytisus scoparius) in Denmark limited by winter cold tolerance?. Plant Ecol 221, 709–723 (2020). https://doi.org/10.1007/s11258-020-01044-x

Download citation

Keywords

  • Acclimation
  • Carbohydrates
  • Climate change
  • Cryptic invasion
  • Freezing tolerance