Influence of environmental heterogeneity and geographic distance on beta-diversity of woody communities

Abstract

To evaluate to what extent effects of environmental heterogeneity and geographic distance determine beta-diversity of woody communities within and among vegetation types at a basin spatial scale. The importance of two components of beta-diversity (nestedness and replacement) were also assessed. Location: Cuitzeo basin, central Mexico. The Cuitzeo basin (ca. 4000 km2) encompasses different vegetation types, among which tropical shrubland, oak forest, and oak–coniferous forest are the most important. We sampled 49 sites (0.1 ha each) across these three vegetation types. All shrubs and trees with diameter at breast height (dbh) ≥ 2.5 cm were recorded and taxonomically identified. Evidence of distance decay model (DDM) was assessed through exponential regressions of Bray–Curtis (measured with basal area) and Sørensen (measured with presence–absence) similarities as function of geographic and environmental distances among sites. Mantel analyses were performed in order to evaluate the influence of distances on similarity values. Exponential decay models of nestedness and replacement as function of distances were evaluated. Evidence supporting DDM was found, but the statistical strength depended on the vegetation type, the variable used to quantify distance, and the way similarity (BC) was measured. Overall, the effect of environmental distance variables was relatively stronger than geographic distance, suggesting that niche-related processes might be more important across the Cuitzeo basin. There is evidence that environmental heterogeneity has a greater importance on beta-diversity of woody communities within the studied basin than geographic distance. We discuss that niche scale processes are causing this result.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anderson MA, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sandes NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28

    PubMed  Article  Google Scholar 

  2. Bacaro G, Rocchini D, Duprè C, Carnesecchi F, Gori V, Chiarucci A (2012) Absence of distance decay in the similarity of plots at small extent in an urban brownfield. Community Ecol 13(1):36–44

    Article  Google Scholar 

  3. Bahram M, Koljalg U, Courty PE, Diédhiou AG, Kjølle R, Põlme S, Ryberg M, Vledre V, Tedersoo L (2013) The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. J Ecol 101:1335–1344

    Article  Google Scholar 

  4. Bannerman JA, Shorthouse JD, Pither J, Lalonde RG (2012) Variability in the parasitoid community associated with galls of Diplolepis variabilis (Hymenoptera: Cynipidae): a test of the distance decay hypothesis. Can Entomol 144:635–644

    Article  Google Scholar 

  5. Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143

    Article  Google Scholar 

  6. Baselga A (2013) Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol Evol 4:552–557. https://doi.org/10.1111/2041-210X.12029

    Article  Google Scholar 

  7. Baselga A, Orme CDL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x

    Article  Google Scholar 

  8. Baselga A, Jiménez-Valverde A, Niccolini G (2007) A multiple-site similarity measure independent of richness. Biol Lett 3:642–645

    PubMed  PubMed Central  Article  Google Scholar 

  9. Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F (2018). betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.5.1. https://CRAN.R-project.org/package=betapart

  10. Brownstein G, Steel JB, Porter S, Gray A, Wilson C, Wilson PG, Wilson BJ (2012) Chance in plant communities: a new approach to its measurement using the nugget from spatial autocorrelation. J Ecol 100:987–996

    Article  Google Scholar 

  11. Cavender-Bares J, Kozak K, Fine P, Kembel S (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    PubMed  Article  Google Scholar 

  12. Chang G, Jin T, Pei J, Chen X, Zhang B, Shi Z (2012) Seed dispersal of three sympatric oak species by forest rodents in the Qinling Mountains Central China. Plant Ecol 213:1633–1642. https://doi.org/10.1007/s11258-012-0118-1

    Article  Google Scholar 

  13. Chapman JI, McEwan RW (2013) Spatiotemporal dynamics of a and B-diversity across topographic gradients in the herbaceous layer of an old-growth deciduous forest. Oikos 122:1679–1686

    Article  Google Scholar 

  14. Chase J (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388–1391

    CAS  PubMed  Article  Google Scholar 

  15. Chase JM, Myers JM (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc B 366:2351–2363

    Article  Google Scholar 

  16. Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE, Post AF, Belkin S (2012) Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamrix trees across the sonoran destert. Appl Environ Microbiol 78(17):6187–6193

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Fitzpatrick MC, Sanders NJ, Normand S, Svenning JC, Ferrier S, Gove AD, Dunn RR (2014) Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc R Soc B 280:1–8

    Google Scholar 

  18. Gilbert B, Lechowicz MJ (2004) Neutrality, niches and dispersal in a temperate forest understorey. Proc Natl Acad Sci USA 101(20):7651–7656

    CAS  PubMed  Article  Google Scholar 

  19. Gómez J, Puerta-Piñero C, Schupp E (2005) Effectiveness of rodents as local seed dispersers of Holm oaks. Oecologia 155:529–537. https://doi.org/10.1007/s00442-007-0928-3

    Article  Google Scholar 

  20. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22(7):1–19

    Article  Google Scholar 

  21. Guèze M, Paneque-Gálvez J, Luz AC, Pino J, Orta-Martínez M, Reyes-García V, Macía MJ (2013) Determinants of tree species turnover in a southern amazonian rain forest. J Veg Sci 24:284–295

    Article  Google Scholar 

  22. Harrison S, Ross SJ, Lawton JH (1992) Beta-diversity on geographic gradients in Britain. J Anim Ecol 61:151–158

    Article  Google Scholar 

  23. Hubbell SP (2001) The unified theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  24. Jones MM, Tuomitso H, Clarck DB, Olivas P (2006) Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. J Ecol 94:181–195

    CAS  Article  Google Scholar 

  25. Kristiansen T, Svenning JC, Eisenhardt WL, Pedersen D, Brix H, Kristiansen SM, Knadel M, Grández C, Balslev H (2012) Environment versus dispersal in the assembly of western Amazonian palm communities. J Biogeogr 39:1318–1332

    Article  Google Scholar 

  26. Leal-Nares O, Mendoza M, Carranza E (2010) Spatial analysis and modeling of climate variables in the Cuitzeo Basin México. Investigaciones Geográficas Boletín del Instituto de Geografía UNAM 72:49–67

    Google Scholar 

  27. López-Martínez JO, Hernández-Stefanoni JL, Dupuy JM, Meave JA (2013) Partitioning the variation of woody plant B-diversity in a landscape of secondary tropical dry forests across spatial scales. J Veg Sci 24:33–45

    Article  Google Scholar 

  28. Martínez, P (2017) pairwiseAdonis: pairwise multilevel comparison using Adonis R package version 001. https://www.githubcom/pmartinezarbizu/pairwiseAdonis

  29. Maza-Villalobos S, Macedo-Santana F, Rodríguez-Velázquez J, Oyama K, Martínez-Ramos M (2014) Variación de la estructura y composición de comunidades de árboles y arbustos entre tipos de vegetación en la Cuenca de Cuitzeo Michoacán. Bot Sci 92(2):243–258

    Article  Google Scholar 

  30. Mendoza M, López-Granados E, Geneleti D, Pérez-Salicrup D, Salinas V (2011) Analysing land cover and land use change processes at watershed level: a multitemporal study in the lake Cuitzeo watershed Mexico (1975-2003). Appl Geogr 31:237–250

    Article  Google Scholar 

  31. Meynard CN, Lavergne S, Boulangeat I, Garraud L, Van Es J, Mouquet N, Thuillier W (2013) Disentangling the drivers of metacommunity structure across spatial scales. J Biogoegr 40:1560–1571

    Article  Google Scholar 

  32. Mikulyuk A, Sharma S, Van Egeren S, Erdmann E, Nault ME, Hauxwell J (2011) The relative role of environmental spatial and land-use patterns in explaining aquatic macrophyte community composition. Can J Fish Aquat Sci 68:1778–1789

    Article  Google Scholar 

  33. Nekola JC, White PS (1999) Distance decay of similarity in biogeography and ecology. J Biogoegr 26:867–878

    Article  Google Scholar 

  34. Oksanen JF, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner E (2018) vegan: Community Ecology Package R package version 25-1. https://www.CRANR-projectorg/package=vegan

  35. Qian H, Shimono A (2012) Effects of geographic distance and climatic dissimilarity on species turnover in alpine meadows communities across a broad spatial extent on the Tibetan Plateau. Plant Ecol 213:1357–1364

    Article  Google Scholar 

  36. Rodrigues JL, Pellizari VH, Mueller R, Baek K, Jesus EC, Paula FS, Mirza B, Hamaoui GS Jr, Tsai SM, Feigl B, Tiedje JM, Bohannan BJM, Nüsslein K (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. PNAS 110(3):988–993

    CAS  PubMed  Article  Google Scholar 

  37. Shibata M, Masaki T, Tanaka H, Niiyama K, Iida S, Abe S, Nakashizuka T (2010) Effects of abiotic and biotic factors and stochasticity on tree regeneration in a temperate forest community. Ecoscience 17(2):137–145

    Article  Google Scholar 

  38. Siefert A, Ravenscroft C, Weiser MD, Swenson NG (2013) Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees. Glob Ecol Biogeogr 22:682–691

    Article  Google Scholar 

  39. Soininen J, Mcdonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12

    Article  Google Scholar 

  40. Steinitz O, Heller J, Tsoar A, Rotem D, Kadmon R (2006) Environment dispersal and patterns of species similarity. J Biogeogr 33:1044–1054

    Article  Google Scholar 

  41. Swenson NG, Anglada-Cordero P, Barone JA (2011) Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proc R Soc B 278:877–884

    PubMed  Article  Google Scholar 

  42. R Core Team (2018) R: A language and environment for statistical computing R Foundation for Statistical Computing. Vienna Austria. https://www.R-projectorg/

  43. Thuille A, Laufer J, Hohl C, Gleixner G (2015) Carbon quality affects the nitrogen partitioning between plants and soil microorganisms. Soil Biol 81:266–274

    CAS  Article  Google Scholar 

  44. Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal environment and floristic variation of western Amazonian Forests. Science 299(10):241–244

    CAS  PubMed  Article  Google Scholar 

  45. van der Gast C, Gosling P, Tiwari B, Bending GD (2011) Spatial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice. Environ Microbiol 13(1):241–249

    PubMed  Article  Google Scholar 

  46. Vellend M, Verheyen K, Flinn KM, Jacquemyn H, van Kolb A, Calster H, Peterken G, Graae BJ, Bellemare J, Honnay O, Brunet J, Wulf M, Gerhardt F, Hermy M (2007) Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J Ecol 95:565–573

    Article  Google Scholar 

  47. Vormistos J, Svenning JC, Hall P, Balslev H (2004) Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon. J Ecol 92:577–588

    Article  Google Scholar 

  48. Wagner S, Collet C, Madsen P, Nakashizuka T, Nyland R, Sagheb-Talebi K (2010) Beech regeneration research: from ecological to silvicultural aspects. For Ecol Manag 259:2172–2182

    Article  Google Scholar 

  49. Wang X, Wiegand T, Wolf A, Howe R, Davies SJ, Hao Z (2011) Spatial patterns of tree species richness in two temperate forests. J Ecol 99:1382–1393

    Article  Google Scholar 

  50. Werner Ulrich W, Almeida-Neto M, Gotelli NJ (2009) A consumer’s guide to nestedness analysis. Oikos 118:3–17. https://doi.org/10.1111/j.1600-0706.2008.17053.x

    Article  Google Scholar 

  51. Zinger L, Boetius A, Ramette A (2014) Bacterial taxa-area and distance-decay relationships in marine environments. Mol Ecol 23:954–964

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

Rodrigo Velázquez Durán (Biogeochemistry laboratory, IIES UNAM) performed soil chemical analysis. Lorena Alvarado, Santiago Arizaga-Pérez, Juan Martínez-Cruz, Miguel A. Pérez-Pérez, Sandra Quijas, and Jorge Rodríguez-Velázquez e Ignacio Torres helped on field work. Financial support by Universidad Nacional Autónoma de México Macro-project “Ecosystem Management and Human Development.” All the authors declare that they do not have conflict of interest of any sort related to this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ernesto Vega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Thomas A. Nagel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 14 kb) ESM1. Environmental variables used.

Supplementary material 2 (XLSX 16 kb) ESM2. Tree species list.

Supplementary material 3 (XLSX 12 kb) ESM3. Average distances (UTM units) between sites.

Supplementary material 4 (DOCX 2961 kb) ESM4. Results of environmental PCA.

Supplementary material 5 (TIFF 21093 kb) ESM5. Exponential decay model of nestedness (black color) and replacement (gray color) values quantified with incidence data as function of geographic or environmental distances in three vegetation types in a basin in central Mexico. Gray points are observed BC values. solid lines are fitted models (PSeudoR2 and p-values are in table 5). OF: oak forest; TS: tropical shrubland; OPF: oak-pine forest. ALL: all vegetation types combined. avgT: average temperature. cT: temperature of the coldest month. dP: rainfall of the driest month. gD: geographic distance. hT: temperature of the hottest month. KgC: carbon soil content. masl: altitude in meters. mmP: total rainfall. pca1, pca2: first and second axes of a PCA with all standardized variables. sd: soil depth. sdP: standard deviation of rainfall. wP: rainfall of the wettest month.

Supplementary material 6 (TIFF 21093 kb) ESM6. Exponential decay model of abundance gradient (black color) and balanced variation (gray color) values quantified with basal area data as function of geographic or environmental distances in three vegetation types in a basin in central Mexico. Gray points are observed BC values. Solid lines are fitted models (PSeudoR2 and p-values are on table 6). OF: oak forest; TS: tropical shrubland; OPF: oak-pine forest. ALL: all vegetation types combined. avgT: average temperature. cT: temperature of the coldest month. dP: rainfall of the driest month. gD: geographic distance. hT: temperature of the hottest month. KgC: carbon soil content. masl: altitude in meters. mmP: total rainfall. pca1, pca2: first and second axes of a PCA with all standardized variables. sd: soil depth. sdP: standard deviation of rainfall. wP: rainfall of the wettest month.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vega, E., Martínez-Ramos, M., García-Oliva, F. et al. Influence of environmental heterogeneity and geographic distance on beta-diversity of woody communities. Plant Ecol 221, 595–614 (2020). https://doi.org/10.1007/s11258-020-01036-x

Download citation

Keywords

  • Distance decay
  • Beta-diversity
  • Central Mexico basin
  • Woody communities
  • Nestedness
  • Spatial replacement