Revegetation technique changes root mycorrhizal colonisation and root fungal communities: the advantage of direct seeding over transplanting tube-stock in riparian ecosystems

Abstract

Riparian ecosystems are among the most degraded worldwide as they are subject to a range of human-mediated disturbances at different scales. As riparian vegetation plays a key role in maintaining waterway and landscape health, restoration often focuses on promoting riparian vegetation re-establishment. The role of below-ground processes and agents in the process of revegetation is often overlooked even though agents like mycorrhizal fungi enhance seedling establishment and plant growth. In this study we aimed to understand whether colonisation by local mycorrhizal fungi can be advantageous to the early phases of plant establishment during revegetation, whether revegetation technique influences the extent of this potential colonisation, and has the potential to enhance revegetation outcomes. We examined mycorrhizal colonisation rate and species composition of root fungal communities in direct seeded and tube-stock plants and compared them with local native vegetation in a retarding basin in Victoria, Australia, then modelled the relationship between root fungal community attributes and plant size. Results indicate that revegetation technique influenced the colonisation rate, diversity and composition of root fungal communities. Moreover, greater fungal diversity and greater similarity of fungal communities to the mycobiota of native vegetation were positively related with growth of seeded plants but showed negative or little relationship to size of tube-stock plants. High colonisation rates of plant species studied, and relationships between fungal community characteristics and plant growth of seeded plants provide the first evidence of the potential importance of mycorrhizal associations for these plant species in a revegetation context.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adjoud D, Plenchette C, Halli-Hargas R, Lapeyrie F (1996) Response of 11 eucalyptus species to inoculation with three arbuscular mycorrhizal fungi. Mycorrhiza 6:129–135. https://doi.org/10.1007/s005720050117

    Article  Google Scholar 

  2. Atondo-Bueno EJ, Bonilla-Moheno M, López-Barrera F (2018) Cost-efficiency analysis of seedling introduction vs. direct seeding of Oreomunnea mexicana for secondary forest enrichment. For Ecol Manage 409:399–406. https://doi.org/10.1016/j.foreco.2017.11.028

    Article  Google Scholar 

  3. Azam G, Grant CD, Nuberg IK, Murray RS, Misra RK (2012) Establishing woody perennials on hostile soils in arid and semi-arid regions—A review. Plant Soil 360:55–76. https://doi.org/10.1007/s11104-012-1215-6

    CAS  Article  Google Scholar 

  4. Barrett-Lennard EG, Norman HC, Dixon K (2016) Improving saltland revegetation through understanding the “recruitment niche”: potential lessons for ecological restoration in extreme environments. Restor Ecol 24:S91–S97. https://doi.org/10.1111/rec.12345

    Article  Google Scholar 

  5. Berruti A, Desirò A, Visentin S, Zecca O, Bonfante P (2017) ITS fungal barcoding primers vs 18S AMF-specific primers reveal similar AMF-based diversity patterns in roots and soils of three mountain vineyards. Environ Microbiol Rep 9:658–667

    CAS  Article  Google Scholar 

  6. Brooks SS, Lake PS (2007) River restoration in Victoria, Australia: change is in the wind, and none too soon. Restor Ecol 15:584–591. https://doi.org/10.1111/j.1526-100X.2007.00253.x

    Article  Google Scholar 

  7. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  8. Capon SJ, Chambers LE, Mac Nally R, Naiman RJ, Davies P, Marshall N, Pittock J, Reid M, Capon T, Douglas M, Catford J, Baldwin DS, Stewardson M, Roberts J, Parsons M, Williams SE (2013) Riparian ecosystems in the 21st century: hotspots for climate change adaptation? Ecosystems 16:359–381. https://doi.org/10.1007/s10021-013-9656-1

    Article  Google Scholar 

  9. Chen YL, Brundrett M, Dell B (2000) Effects of ectomycorrhizas and vesicular–arbuscular mycorrhizas, alone or in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytol 146:545–556. https://doi.org/10.1046/j.1469-8137.2000.00663.x

    Article  Google Scholar 

  10. Chilvers GA, Gust LW (1982) Comparisons between the growth rates of mycorrhizas, uninfected roots and a mycorrhizal fungus of Eucalyptus st-johnii R.T Bak. New Phytol 91:453–466. https://doi.org/10.1111/j.1469-8137.1982.tb03324.x

    Article  Google Scholar 

  11. Chilvers GA, Lapeyrie F, Horan DP (1987) Ectomycorrhizal vs endomycorrhizal fungi within the same root system. New Phytol 107:441–448

    Article  Google Scholar 

  12. Churchland C, Grayston SJ (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5:1–20. https://doi.org/10.3389/fmicb.2014.00261

    Article  Google Scholar 

  13. Cortese AM, Bunn RA (2017) Availability and function of arbuscular mycorrhizal and ectomycorrhizal fungi during revegetation of dewatered reservoirs left after dam removal. Restor Ecol 25:63–71. https://doi.org/10.1111/rec.12406

    Article  Google Scholar 

  14. de Souza EL, Antoniolli ZI, Machado RG, Eckhardt DP, Dahmer SDFB (2014) Eucalyptus grandis Hill ex maiden inoculated with Pisolithus microcarpus (UFSC-PT116) in land subject to the sandy process in Southern Brazil. Braz J Microbiol 45:1145–1151. https://doi.org/10.1590/S1517-83822013005000042

    Article  PubMed  Google Scholar 

  15. Ede F (2018) Counting the cost of revegetation: is direct seeding cheaper than planting tube-stock? In: Smith R (ed) In: Proceedings of restore, regenerate, revegetate: a Conference on restoring Ecological Processes, Ecosystems and Landscapes in a changing world. Armidale, New South Wales, Australia

  16. Egerton-Warburton L, Allen MF (2001) Endo- and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11:283–290. https://doi.org/10.1007/s005720100134

    CAS  Article  PubMed  Google Scholar 

  17. Gellie NJC, Breed MF, Thurgate N, Kennedy SA, Lowe AJ (2016) Local maladaptation in a foundation tree species: implications for restoration. Biol Conserv 203:226–232. https://doi.org/10.1016/j.biocon.2016.08.036

    Article  Google Scholar 

  18. Giller PS (2005) River restoration: seeking ecological standards Editor’s introduction. J Appl Ecol 42:201–207. https://doi.org/10.1111/j.1365-2664.2005.01020.x

    Article  Google Scholar 

  19. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infenction in roots. New Phytol 84:489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  20. Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122. https://doi.org/10.1007/s00425-006-0225-0

    CAS  Article  PubMed  Google Scholar 

  21. Grabau MR (2009) Irrigation and seeding technique development for riparian corridor habitat revegetation. The University of Arizona, Tucson

    Google Scholar 

  22. Grossnickle SC, Ivetić V (2017) Direct seeding in reforestation—A field performance review. Reforesta 4:94–142. https://doi.org/10.21750/REFOR.4.07.46

    Article  Google Scholar 

  23. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. https://doi.org/10.1128/MMBR.00050-14

    Article  PubMed  PubMed Central  Google Scholar 

  24. Harris J (2009) Soil microbial communities and restoration ecology: facilitators or followers? Science 325:573–574. https://doi.org/10.1126/science.287.5461.2159b

    CAS  Article  PubMed  Google Scholar 

  25. Hazard C, Johnson D (2018) Does genotypic and species diversity of mycorrhizal plants and fungi affect ecosystem function? New Phytol 220:1122–1128. https://doi.org/10.1111/nph.15010

    Article  PubMed  Google Scholar 

  26. Holste EK, Kobe RK, Gehring CA (2017) Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. Mycorrhiza 27:211–223. https://doi.org/10.1007/s00572-016-0744-x

    CAS  Article  PubMed  Google Scholar 

  27. Janoušková M, Krak K, Vosátka M, Püschel D, Štorchová H (2017) Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants. PLoS ONE 12:1–21. https://doi.org/10.1371/journal.pone.0181525

    CAS  Article  Google Scholar 

  28. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16. https://doi.org/10.1007/s00374-002-0546-5

    Article  Google Scholar 

  29. Kadowaki K, Yamamoto S, Sato H, Tanabe AS, Hidaka A, Toju H (2018) Mycorrhizal fungi mediate the direction and strength of plant–soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Commun Biol 1:196. https://doi.org/10.1038/s42003-018-0201-9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Klironomos JN (2000) Host-specificity and functional diversity among arbuscular mycorrhizal fungi. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Atlantic Canada Society from Microbial Ecology, Halifax, pp 845–851

    Google Scholar 

  31. Kranabetter JM (2005) Understory conifer seedling response to a gradient of root and ectomycorrhizal fungal contact. Can J Bot 83:638–646. https://doi.org/10.1139/b05-035

    Article  Google Scholar 

  32. Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol. https://doi.org/10.1111/j.1469-8137.2009.02835.x

    Article  PubMed  Google Scholar 

  33. Lapeyrie FF, Chilvers GA (1985) An endomycorrhiza-ectomycorrhiza succession associated with enhanced growth of Eucalyptus dumosa seedlings planted in a calcareous soil. New Phytol 100:93–104. https://doi.org/10.5642/aliso.20082601.08

    Article  Google Scholar 

  34. Lekberg Y, Vasar M, Bullington LS, Sepp SK, Antunes PM, Bunn R, Larkin BG, Öpik M (2018) More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol 220:971–976. https://doi.org/10.1111/nph.15035

    Article  PubMed  Google Scholar 

  35. Lovelock CE, Miller R (2002) Heterogeneity in inoculum potential and effectiveness of arbuscular mycorrhizal fungi. Ecology 83:823–832

    Article  Google Scholar 

  36. McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1003531

    Article  PubMed  PubMed Central  Google Scholar 

  37. Meinhardt KA, Gehring CA (2012) Disrupting mycorrhizal mutualisms: a potential mechanism by which exotic tamarisk outcompetes native cottonwoods. Ecol Appl 22:532–549. https://doi.org/10.1890/11-1247.1

    Article  PubMed  Google Scholar 

  38. Michelsen A (1992) Mycorrhiza and root nodulation in tree seedlings from five nurseries in Ethiopia and Somalia. For Ecol Manage 48:335–344. https://doi.org/10.1016/0378-1127(92)90154-2

    Article  Google Scholar 

  39. Middleton EL, Richardson S, Koziol L, Palmer CE, Yermakov Z, Henning JA, Schultz PA, Bever JD (2015) Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere. https://doi.org/10.1890/ES15-00152.1

    Article  Google Scholar 

  40. Nara K (2006) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178. https://doi.org/10.1111/j.1469-8137.2005.01545.x

    CAS  Article  PubMed  Google Scholar 

  41. Orloff LN, Mangold JM, Menalled FD (2015) Site-specific effects of exotic annual grass control integrated with revegetation. Ecol Restor 33:147–155. https://doi.org/10.3368/er.33.2.147

    Article  Google Scholar 

  42. Pagano M (2011) Mycorrhiza: occurrence and role in natural and restored environments. Nova Science Publishers Inc, New York

    Google Scholar 

  43. Palma AC, Laurance SGW (2015) A review of the use of direct seeding and seedling plantings in restoration: what do we know and where should we go? Appl Veg Sci 18:561–568. https://doi.org/10.1111/avsc.12173

    Article  Google Scholar 

  44. Palmer MA, Bernhardt ES, Allan JD, Lake PS, Alexander G, Brooks S, Carr J, Clayton S, Dahm CN, Follstad Shah J, Galat DL, Loss SG, Goodwin P, Hart DD, Hassett B, Jenkinson R, Kondolf GM, Lave R, Meyer JL, O’Donnell TK, Pagano L, Sudduth E (2005) Standards for ecologically successful river restoration. J Appl Ecol 42:208–217. https://doi.org/10.1111/j.1365-2664.2005.01004.x

    Article  Google Scholar 

  45. R development Core Team (2008) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/

  46. Raju PS, Clark RB, Ellis JR, Maranville JW (1990) Effects of species of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil 121:165–170

    CAS  Article  Google Scholar 

  47. Ramlow M, Rhoades CC, Cotrufo MF (2018) Promoting revegetation and soil carbon sequestration on decommissioned forest roads in Colorado, USA: a comparative assessment of organic soil amendments. For Ecol Manage 427:230–241. https://doi.org/10.1016/j.foreco.2018.05.059

    Article  Google Scholar 

  48. Revillini D, Gehring CA, Johnson NC (2016) The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Funct Ecol 30:1086–1098. https://doi.org/10.1111/1365-2435.12668

    Article  Google Scholar 

  49. Richardson DM, Holmes P, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pysek P, Hobbs RJ (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126–139. https://doi.org/10.1111/j.1472-4642.2006.00314.x

    Article  Google Scholar 

  50. Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754. https://doi.org/10.1111/j.1461-0248.2004.00620.x

    Article  Google Scholar 

  51. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53. https://doi.org/10.1111/j.1469-8137.2006.01750.x

    CAS  Article  PubMed  Google Scholar 

  52. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

    CAS  Article  PubMed  Google Scholar 

  53. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, Del-Prado R, Dentinger B, Diéguez-Uribeondo J, Divakar PK, Douglas B, Dueñas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, García MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera C, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Högnabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EBG, Kelly LJ, Kirk PM, Knapp DG, Kõljalg U, Kovács GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SSN, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo JM, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul TL, Ruibal C, Sarmiento-Ramírez JM, Schmitt I, Schüßler A, Shearer C, Sotome K, Stefani FOP, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh SO, Sung GH, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vágvölgyi C, Vialle A, Vu TD, Walther G, Wang QM, Wang Y, Weir BS, Weiß M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora JC, Zhang N, Zhuang WY, Schindel D (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246. https://doi.org/10.1073/pnas.1117018109

    Article  PubMed  Google Scholar 

  54. Selosse MA, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628. https://doi.org/10.1016/j.tree.2006.07.003

    Article  PubMed  Google Scholar 

  55. Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165. https://doi.org/10.1139/b04-116

    CAS  Article  Google Scholar 

  56. Small CC, Degenhardt D (2018) Plant growth regulators for enhancing revegetation success in reclamation: a review. Ecol Eng 118:43–51. https://doi.org/10.1016/j.ecoleng.2018.04.010

    Article  Google Scholar 

  57. Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  58. Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474. https://doi.org/10.1111/j.1469-8137.2010.03262.x

    CAS  Article  PubMed  Google Scholar 

  59. Teste FP, Jones MD, Dickie IA (2019) Dual-mycorrhizal plants: their ecology and relevance. New Phytol. https://doi.org/10.1111/nph.16190

    Article  PubMed  Google Scholar 

  60. Thorp JH, Flotemersch JE, Delong MD, Casper AF, Thoms MC, Ballantyne F, Williams BS, O’Neill BJ, Haase CS (2010) Linking ecosystem services, rehabilitation, and river hydrogeomorphology. Bioscience 60:67–74. https://doi.org/10.1525/bio.2010.60.1.11

    Article  Google Scholar 

  61. Vályi K, Mardhiah U, Rillig MC, Hempel S (2016) Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. ISME J 10:2341–2351. https://doi.org/10.1038/ismej.2016.46

    Article  PubMed  PubMed Central  Google Scholar 

  62. van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091. https://doi.org/10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2

    Article  Google Scholar 

  63. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Sanders IR, Wiemken A (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72. https://doi.org/10.1038/23932

    CAS  Article  Google Scholar 

  64. van der Heijden MGA, Horton TR (2009) Socialism in soil? the importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150. https://doi.org/10.1111/j.1365-2745.2009.01570.x

    Article  Google Scholar 

  65. Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  Article  Google Scholar 

  66. Werner GDA, Kiers ET (2015) Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytol 205:1515–1524. https://doi.org/10.1111/nph.13092

    CAS  Article  PubMed  Google Scholar 

  67. Willis AD (2019) Rarefaction, alpha diversity, and statistics. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02407

    Article  PubMed  PubMed Central  Google Scholar 

  68. Willis AD, Bungle J (2014) Breakaway: species richness estimation and modelling. R package version 3.0

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of VEAC (Victorian Environmental Assessment Council) through the Bill Borthwick Scholarship, the ESA (Ecological Society of Australia) through the Applied Forest Ecology Scholarship, and Mexico´s CONACYT (Consejo Nacional de Ciencia y Tecnología) and SENER (Secretaría de Energía) for funding the master programme of Ana Isabel Bermúdez Contreras through Scholarship Number 617928.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana I. Bermúdez-Contreras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Christina Birnbaum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 162 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bermúdez-Contreras, A.I., Ede, F., Waymouth, V. et al. Revegetation technique changes root mycorrhizal colonisation and root fungal communities: the advantage of direct seeding over transplanting tube-stock in riparian ecosystems. Plant Ecol 221, 813–828 (2020). https://doi.org/10.1007/s11258-020-01031-2

Download citation

Keywords

  • Direct seeding
  • Mycorrhizal fungi
  • Tube-stock transplanting
  • Soil microbial community
  • Revegetation
  • Riparian