Calculating the uncertainty associated with log response ratios in plant–soil feedback studies

Abstract

The strength and direction of plant–soil feedbacks are commonly estimated using log response ratios. Ratios have the benefit of being readily comparable across taxa and studies, but calculating the uncertainty associated with a ratio is not always straightforward. Many studies do not report estimates of uncertainty for feedback ratios despite this being central to interpreting the findings. We describe three ways to calculate the uncertainty associated with the mean log response ratio in plant–soil feedback studies (an analytical formula, bootstrapping, and model fitting), and show how these approaches produce comparable estimates for 95% confidence intervals around the mean. While the choice of method will depend on the experimental design of the study, we suggest that model fitting may be the most reliable and flexible approach. Presenting feedback ratios and their associated uncertainty in a consistent manner will allow clearer assessment of the findings of individual studies and facilitate cross-study comparisons, such as meta-analysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aguilera AG, Morey S, Gammon M, Jiang M, Ramos S, Kesseli R (2017) Effect of plant-soil feedbacks on the growth and competition of Lactuca species. Plant Ecol 218(3):359–372. https://doi.org/10.1007/s11258-016-0697-3

    Article  Google Scholar 

  2. Bauer JT, Blumenthal N, Miller AJ, Ferguson JK, Reynolds HL (2017) Effects of between-site variation in soil microbial communities and plant-soil feedbacks on the productivity and composition of plant communities. J Appl Ecol 54:1028–1039. https://doi.org/10.1111/1365-2664.12937

    CAS  Article  Google Scholar 

  3. Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics : the utility of the feedback approach. J Ecol 85(5):561–573

    Article  Google Scholar 

  4. Bezemer TM, Jing J, Bakx-Schotman JMT, Bijleveld E-J (2018) Plant competition alters the temporal dynamics of plant-soil feedbacks. J Ecol. https://doi.org/10.1111/1365-2745.12999

    Article  Google Scholar 

  5. Brinkman EP, van der Putten WH, Bakker EJ, Verhoeven KJF (2010) Plant-soil feedback: experimental approaches, statistical analyses and biological interpretations. J Ecol 98:1063

    Article  Google Scholar 

  6. Brinkman EP, Raaijmakers CE, de Boer W, van der Putten WH (2017) Changing soil legacies to direct restoration of plant communities. AoB Plants Narnia. https://doi.org/10.1093/aobpla/plx038

    Article  Google Scholar 

  7. Buonaccorsi JP, Liebhold AM (1988) Statistical methods for estimating ratios and products in ecological studies. Environ Entomol Narnia 17(3):572–580. https://doi.org/10.1093/ee/17.3.572

    Article  Google Scholar 

  8. Burns JH, Brandt AJ, Murphy JE, Kaczowka AM, Burke DJ (2017) Spatial heterogeneity of plant-soil feedbacks increases per capita reproductive biomass of species at an establishment disadvantage. Oecologia 183(4):1077–1086. https://doi.org/10.1007/s00442-017-3828-1

    Article  PubMed  Google Scholar 

  9. Dudenhöffer J-H, Ebeling A, Klein A-M, Wagg C (2017) Beyond biomass: soil feedbacks are transient over plant life-stages and alter fitness. J Ecol https://doi.org/10.1111/1365-2745.12870

    Article  Google Scholar 

  10. Efron, B. and Tibshirani, R. (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, statistical science. https://about.jstor.org/terms. Accessed 18 April 2019.

  11. Fitzpatrick CR, Gehant L, Kotanen PM, Johnson MTJ (2017) Phylogenetic relatedness, phenotypic similarity, and plant-soil feedbacks. J Ecol 105:786–800. https://doi.org/10.1111/1365-2745.12709

    Article  Google Scholar 

  12. Gomez-Aparicio, L., Dom Inguez-Begines, J., Kardol, P., M Avila, J. E., A, B. I. and Garc Ia, L. V (2017) Plant-soil feedbacks in declining forests: implications for species coexistence. https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ecy.1864. Accessed 18 April 2019.

  13. van Grunsven RHA, van der Putten WH, Bezemer MT, Tamis WLM, Berendse F, Veenendaal EM (2007) Reduced plant-soil feedback of plant species expanding their range as compared to natives. J Ecol 95(5):1050–1057. https://doi.org/10.1111/j.1365-2745.2007.01282.x

    Article  Google Scholar 

  14. Gundale MJ, Kardol P, Nilsson MC, Nilsson U, Lucas RW, Wardle DA (2014) Interactions with soil biota shift from negative to positive when a tree species is moved outside its native range. New Phytol 202(2):415–421. https://doi.org/10.1111/nph.12699

    Article  PubMed  Google Scholar 

  15. Hesterberg, T. (2014) Bootstrap with Examples, Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.stat06780

  16. Hoffmann WA, Poorter H (2002) Avoiding bias in calculations of relative growth rate. Ann Bot Narnia 90(1):37–42. https://doi.org/10.1093/aob/mcf140

    Article  Google Scholar 

  17. Kaisermann A, De Vries FT, Griffiths RI, Bardgett RD (2017) Legacy effects of drought on plant-soil feedbacks and plant-plant interactions. New Phytol 215:1413–1424. https://doi.org/10.1111/nph.14661

    CAS  Article  PubMed  Google Scholar 

  18. Kardol P, Martijn Bezemer T, van der Putten WH (2006) Temporal variation in plant-soil feedback controls succession. Ecol Lett 9(9):1080–1088. https://doi.org/10.1111/j.1461-0248.2006.00953.x

    Article  PubMed  Google Scholar 

  19. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417(6884):67–70. https://doi.org/10.1038/417067a

    CAS  Article  PubMed  Google Scholar 

  20. Kulmatiski A, Kardol P (2008) Getting plant—soil feedbacks out of the greenhouse: experimental and conceptual approaches. Prog Bot. https://doi.org/10.1007/978-3-642-55819-1

    Article  Google Scholar 

  21. Lajeunesse MJ (2015) Bias and correction for the log response ratio in ecological meta-analysis. Ecology. 96(8):2056–2063. https://doi.org/10.1890/14-2402.1

    Article  PubMed  Google Scholar 

  22. Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. BioScience Narnia 51(5):341–352. https://doi.org/10.1641/0006-3568(2001)051[0341:lndats]2.0.co;2

    Article  Google Scholar 

  23. Mangan SA, Schnitzer SA, Herre EA, MacK KML, Valencia MC, Sanchez EI, Bever JD (2010) Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466(7307):752–755. https://doi.org/10.1038/nature09273

    CAS  Article  PubMed  Google Scholar 

  24. Maron JL, Smith AL, Ortega YK, Pearson DE, Callaway RM (2016) Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition. Ecology 97(8):2055–2063. https://doi.org/10.1002/ecy.1431

    Article  PubMed  Google Scholar 

  25. McGinn KJ, van der Putten WH, Hulme PE, Shelby N, Weser C, Duncan RP (2017) The influence of residence time and geographic extent on the strength of plant-soil feedbacks for naturalised Trifolium. J Ecol. https://doi.org/10.1111/1365-2745.12864

    Article  Google Scholar 

  26. Perkins LB, Nowak RS (2013) Native and non-native grasses generate common types of plant-soil feedbacks by altering soil nutrients and microbial communities. Oikos 122(2):199–208. https://doi.org/10.1111/j.1600-0706.2012.20592.x

    Article  Google Scholar 

  27. Semchenko M, Saar S, Lepik A (2017) Intraspecific genetic diversity modulates plant-soil feedback and nutrient cycling. New Phytol. https://doi.org/10.1111/nph.14653

    Article  PubMed  Google Scholar 

  28. Shelby N, Hulme PE, van der Putten WH, McGinn KJ, Weser C, Duncan RP (2016) No difference in the competitive ability of introduced and native Trifolium provenances when grown with soil biota from their introduced and native ranges. AoB Plants. https://doi.org/10.1093/aobpla/plw016

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sokal, R. R. and Rohlf, F. J. (1995) Biometry: the princples and practice of statistic in biological research (3rd) New York: W. H. Freeman and Company.

    Google Scholar 

  30. Suding KN, Stanley Harpole W, Fukami T, Kulmatiski A, Macdougall AS, Stein C, van der Putten WH (2013) Consequences of plant-soil feedbacks in invasion. J Ecol 101(2):298–308. https://doi.org/10.1111/1365-2745.12057

    Article  Google Scholar 

  31. Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, Laliberté E (2017) Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355(6321):173–176. https://doi.org/10.1126/science.aai8291

    CAS  Article  PubMed  Google Scholar 

  32. Ushio M, Aiba S, Takeuchi Y, Iida Y, Matsuoka S, Repin R, Kitayama K (2017) Plant-soil feedbacks and the dominance of conifers in a tropical montane forest in Borneo. Ecol Monogr 87(1):105–129

    Article  Google Scholar 

  33. van der Putten WH, Dijk CV, Peters BAM (1993) Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–56. https://doi.org/10.1038/362053a0

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Australian Research Council Grant DP150101839 to Richard Duncan and funding from the University of Canberra to Richard Duncan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Bates.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Eleonora Egidi.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bates, S.E., Wandrag, E.M. & Duncan, R.P. Calculating the uncertainty associated with log response ratios in plant–soil feedback studies. Plant Ecol 221, 829–836 (2020). https://doi.org/10.1007/s11258-019-00981-6

Download citation

Keywords

  • Plant–soil feedback
  • Log response ratio
  • Uncertainty
  • Bootstrapping
  • Modelling uncertainty