Plant Ecology

, Volume 219, Issue 6, pp 677–690 | Cite as

Elevational and phytophysiognomic gradients influence the epiphytic community in a cloud forest of the Atlantic phytogeographic domain

  • Samyra G. Furtado
  • Luiz Menini Neto


Biological communities vary in composition and structure according to changes in the environment, such as in mountainous areas where temperature and moisture change with elevation, leading to gradual changes in vegetation. The altitudinal gradient is considered mirrors of the latitudinal gradient, although the richness peak can occur in the middle of the gradient, due to the greater total availability of moisture and/or due to the mid-domain effect. We aimed to test whether there was an intermediary peak in the richness of vascular epiphytes in two environmental gradients represented by elevation (around 1200–1700 m.s.m.) and by three subphysiognomies of cloud dwarf-forest in the Brazilian Atlantic Forest. For this purpose, 24 plots of 10 × 20 m were established and divided into eight sets in each subphysiognomy, along the altitudinal gradient. The community structure was analyzed by calculating the Shannon diversity index (H′), the Pielou uniformity index (J), and taxonomic diversity indices (Δ+ and Λ+). In total, 568 phorophytes were sampled, resulting in 3771 occurrences of epiphytes, distributed in 146 species. The diversity was different between the physiognomies of dwarf-forest and along the elevation gradient, and was specifically greater with higher elevation. The value of Δ+ was lower than expected in one plot, and represented a potential human impact. The obtained results highlight the diversity of this region and the important contribution of the epiphytes, as well as the sensitivity of epiphytic communities to the different vegetation physiognomies and the climatic variations caused by the elevation.


Atlantic forest Dwarf-forest MDE—mid domain effect Rainforest Vascular epiphytes 



We thank the specialists who contributed with identification of the species; IEF-MG and PGECOL/UFJF for the logistic support, CAPES for the study grant conceded to S.G.F, and two anonymous reviewers who contributed to the quality of this text.

Supplementary material

11258_2018_826_MOESM1_ESM.xlsx (22 kb)
Supplementary material 1 (XLSX 22 kb)
11258_2018_826_MOESM2_ESM.tif (279 kb)
Supplementary material 2 (TIFF 278 kb)
11258_2018_826_MOESM3_ESM.tif (303 kb)
Supplementary material 3 (TIFF 302 kb)


  1. Alves ACA (2015) Anatomia ecológica de Orchidaceae Juss. do Parque Estadual do Ibitipoca, MG, Brasil. Tese, Universidade Federal de Juiz de ForaGoogle Scholar
  2. Alves FE, Menini Neto L (2014) Vascular epiphytes in a forest fragment of Serra da Mantiqueira and floristic relationships with Atlantic high altitude areas in Minas Gerais. Braz J Bot 37:187–196. CrossRefGoogle Scholar
  3. Arévalo R, Betancur J (2004) Diversidad de epífitas vasculares en cuatro bosques del sector suroriental de la serranía de Chiribiquete, Guayana Colombiana. Caldasia 26(2):359–380Google Scholar
  4. Ballantyne M, Pickering C (2012) Ecotourism as a threatening process for wild orchids. J Ecotourism 11(1):34–47. CrossRefGoogle Scholar
  5. Benzing DH (1990) Vascular epiphytes: general biology and related biota. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Blum CT, Roderjan CV, Galvão F (2011) Composição florística e distribuição altitudinal de epífitas vasculares da Floresta Ombrófila Densa na Serra da Prata, Morretes, Paraná, Brasil. Biota Neotrop 11(4):141–159CrossRefGoogle Scholar
  7. Bøgh A (1992) Composition and distribution of the vascular epiphyte flora of an Ecuadorian montane rain forest. Selbyana 13:25–34Google Scholar
  8. Bonnet A, Caglioni E, Schmitt JL, Cadorin TJ, Gasper AL, Andrade S, Grosch B, Cristofolini C, Oliveira CPL, Lingner DV, Uhlmann A, Sevegnani L, Vibrans AC (2013) Epífitos Vasculares da Floresta Ombrófila Densa de Santa Catarina. In: Vibrans AC, Bonnet A, Caglioni E, Gasper AL, Lingner DV (eds) Inventário florístico floretal de Santa Santa Catarina, vol 5, 1ª edn. Edfurb, Blumenau, pp 23–67Google Scholar
  9. Brown JH, Lomolino MV (2006) Biogeografia, 2ª edn. FUNPEC, Ribeirão PretoGoogle Scholar
  10. Cardelús CL, Colwell RK, Watkins JE (2006) Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. J Ecol 94(1):144–156. CrossRefGoogle Scholar
  11. CETEC (1983) Diagnóstico ambiental do estado de Minas Gerais. Fundação Centro Tecnológico de Minas Gerais, Belo HorizonteGoogle Scholar
  12. Clarke KR, Warwick RM (2001) A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Prog Ser 216:265–278CrossRefGoogle Scholar
  13. Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. TREE 15(2):70–76. PubMedGoogle Scholar
  14. Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far? Am Nat 163(3):E1–E23CrossRefPubMedGoogle Scholar
  15. Ding Y, Liu G, Zang R, Zhang J, Lu X, Huang J (2016) Distribution of vascular epiphytes along a tropical elevational gradient: disentangling abiotic and biotic determinants. Sci Rep 6:19706. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dunn RR, McCain CM, Sanders NJ (2007) When does diversity fit null model predictions? Scale and range size mediate the mid-domain effect. Global Ecol Biogeogr 16:305–312. CrossRefGoogle Scholar
  17. Forzza RC, Menini Neto L, Salimena FRG, Zappi D (orgs) (2013) Flora do Parque Estadual do Ibitipoca e seu entorno. Editora UFJF, Juiz de ForaGoogle Scholar
  18. Furtado SG, Menini Neto L (2016) Diversity of vascular epiphytes in two high altitude biotopes of the Brazilian Atlantic Forest. Braz J Bot 38(2):295–310. CrossRefGoogle Scholar
  19. Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann Miss Bot Gard 74:205–233. CrossRefGoogle Scholar
  20. Goodenough AE, Goodenough AS (2012) Development of a rapid and precise method of digital image analysis to quantify canopy density and structural complexity. ISRN Ecol 2012:1–11. CrossRefGoogle Scholar
  21. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Elect 4(1):1–9Google Scholar
  22. Hietz P, Hietz-Seifert U (1995) Composition and ecology of vascular epiphyte communities along an altitudinal gradient in Central Veracruz, Mexico. J Veg Sci 6(4):487–498. CrossRefGoogle Scholar
  23. Hsu RCC, Wolf JH, Tamis WL (2014) Regional and elevational patterns in vascular epiphyte richness on an east Asian island. Biotropica 46(5):549–555. CrossRefGoogle Scholar
  24. Kersten RA (2010) Epífitas vasculares: História, participação taxonômica e aspectos relevantes com ênfase na Mata Atlântica. Hoehnea 37(1):9–38. CrossRefGoogle Scholar
  25. Kersten RA, Kuniyoshi YS (2009) Conservação das florestas na Bacia do Alto Iguaçu, Paraná—Avaliação da comunidade de Epífitas vasculares em diferentes estágios serais. Rev Floresta 3:51–66. Google Scholar
  26. Kersten RA, Silva SM (2001) Composição florística e distribuição espacial de epífitas vasculares em floresta da planície litorânea da Ilha do Mel, Paraná, Brasil. Rev Bras Bot 24:213–226. CrossRefGoogle Scholar
  27. Kersten RA, Silva SM (2006) The floristic compositions of vascular epiphytes of a seasonally inundated forest on the coastal plain of Mel Island, Brazil. Rev Biol Trop 54:935–942. CrossRefGoogle Scholar
  28. Kersten RA, Waechter J (2009) Florística e estrutura de epífitas vasculares na transição entre as florestas ombrófila densa e mista da vertente oeste da Serra do Mar paranaense, Brasil. In: Felfili JM, Eisenlohr PV, Melo MMRF, Andrade LA, Meira Neto JAA (eds) Fitossociologia no Brasil—Métodos e estudos de casos. Editora UFV, Viçosa, pp 479–503Google Scholar
  29. Kessler M, Kluge J, Hemp A, Ohlemüller R (2011) A global comparative analysis of elevational species richness patterns of ferns. Global Ecol Biogeogr 20(6):868–880. CrossRefGoogle Scholar
  30. Körner C (2004) Mountain biodiversity, its causes and function. Ambio 13:11–17Google Scholar
  31. Krömer T, Kessler M, Gradstein R, Acebey A (2005) Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. J Biogeogr 32:1799–1809. CrossRefGoogle Scholar
  32. Krömer T, Jimenez I, Kessler M (2008) Diversity and vertical distribution patterns of vascular epiphytes in the Cordillera Mosetenes, Cochabamba, Bolivia. Rev Bol Ecol Y Cons Amb 23:27–38Google Scholar
  33. Küper W, Kreft H, Nieder J, Köster N, Barthlott W (2004) Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. J Biogeogr 31(9):1477–1487. CrossRefGoogle Scholar
  34. Leitman P, Amorim AM, Sansevero JB, Forzza RC (2015) Floristic patterns of epiphytes in the Brazilian Atlantic forest, a biodiversity hotspot. Bot J Linn Soc 179(4):587–601. CrossRefGoogle Scholar
  35. Madison M (1977) Vascular epiphytes: their systematic occurrence and salient features. Selbyana 2(1):1–13Google Scholar
  36. Magurran AE (2011) Medindo a diversidade biológica. Editora UFPR, CuritibaGoogle Scholar
  37. Mania LF (2012) Composição florística de comunidades epifíticas vasculares em unidades de conservação no Estado de São Paulo. Universidade de São Carlos, TeseGoogle Scholar
  38. Menini Neto L, Forzza RC, Zappi D (2009) Angiosperm epiphytes as conservation indicators in forest fragments: a case study from southeastern Minas Gerais, Brazil. Biodivers Biodivers Conserv 18:3785–3807. CrossRefGoogle Scholar
  39. Moran RC (1995) The importance of mountains to pteridophytes, with emphasis on Neotropical montane forests. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of Neotropical montane forests (Proceedings of a symposium, New York Botanical Garden, 21–26 June 1993). New York Botanical Garden, New York, pp 359–363Google Scholar
  40. Nieder J, Engwald S, Klawun M, Barthlott W (2000) Spatial distribution of vascular epiphytes (including hemiepiphytes) in a lowland Amazonian rain forest (Surumoni Crane Plot) of southern Venezuela. Biotropica 32(3):385–396. CrossRefGoogle Scholar
  41. Oliveira-Filho AT, Fontes MAL, Viana PL, Valente ASM, Salimena FRG, Ferreira FM (2013) O mosaico de fitofisionomias do Parque Estadual do Ibitipoca. In: Forzza RC, Menini Neto L, Salimena FRG, Zappi D (eds) Flora do Parque Estadual do Ibitipoca e seu entorno. Editora UFJF, Juiz de Fora, pp 53–93Google Scholar
  42. Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18(2):200–205. CrossRefGoogle Scholar
  43. Rankin BL, Ballantyne M, Pickering CM (2015) Tourism and recreation listed as a threat for a wide diversity of vascular plants: a continental scale review. J Environ Manag 154:293–298. CrossRefGoogle Scholar
  44. Ricklefs RE (2008) The economy of nature. Macmillan, BedfordGoogle Scholar
  45. Rocha GC (2013) O meio físico da região de Ibitipoca: características e fragilidade. In: Forzza RC, Menini Neto L, Salimena FRG, Zappi D (eds) Flora do Parque Estadual do Ibitipoca e seu entorno. Editora UFJF, Juiz de Fora, pp 27–52Google Scholar
  46. Rodela LG, Tarifa JR (2002) O clima da serra do Ibitipoca, sudeste de Minas Gerais. Rev Espaço e Tempo 11:101–113Google Scholar
  47. Sanger JC, Kirkpatrick JB (2015) Moss and vascular epiphyte distributions over host tree and elevation gradients in Australian subtropical rainforest. Aust J Bot 63(8):696–704. CrossRefGoogle Scholar
  48. Scatena FN, Bruijnzeel LA, Bubb P, Das S (2010) Chapter 1: Setting the stage. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 3–13Google Scholar
  49. Schütz-Gatti AL (2000) O componente epifítico vascular na Reserva Natural de Salto Morato. Dissertação, Universidade Federal do Paraná, Guaraqueçaba-PRGoogle Scholar
  50. Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140(6):893–911CrossRefPubMedGoogle Scholar
  51. Sugden AM, Robins RJ (1979) Aspects of the ecology of vascular epiphytes in Colombian cloud forests, I. The distribution of the epiphytic flora. Biotropica 11(3):173–188. CrossRefGoogle Scholar
  52. Thiers B (2016) Index herbariorum: a global directory of public herbaria and associated staff. The New York Botanical Garden. Accessed 19 Sept 2016
  53. Waechter JL (1992) O epifitismo vascular na planície costeira do Rio Grande do Sul. Universidade Federal de São Carlos, TeseGoogle Scholar
  54. Warwick RM, Clarke KR (1995) New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol Prog Ser 129:301–305. CrossRefGoogle Scholar
  55. Warwick RM, Clarke KR (1998) Taxonomic distinctness and environmental assessment. J Appl Ecol 35(4):532–543CrossRefGoogle Scholar
  56. Webster GL (1995) The panorama of Neotropical cloud forests. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of Neotropical montane forests (Proceedings of a symposium, New York Botanical Garden, 21–26 June 1993), New York Botanical Garden, New York, pp 53–77Google Scholar
  57. Wolf JH (1994) Factors controlling the distribution of vascular and non-vascular epiphytes in the northern Andes. Vegetation 112(1):15–28. CrossRefGoogle Scholar
  58. Wraith J, Pickering C (2017) Tourism and recreation a global threat to orchids. Biodivers Conserv 26(14):3407–3420. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Programa de Pós-graduação em Ecologia e Recursos Naturais, Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  2. 2.Departamento de Botânica, Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations