Skip to main content
Log in

The effect of nitrogen deposition on the vegetation of wet heathlands

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The statistical modelling of joint species abundance is currently receiving increasing attention in the ecological literature because it complements earlier descriptive accounts of the effect of disturbance on community change with quantitative measures of spatial covariation among species at different spatial scales. Using a hierarchical Bayesian approach, we fitted both temporal and spatial plant cover data to a joint distribution model of plant abundance of the dominant plants in wet heathlands (Erica tetralix, Calluna vulgaris and Molinia caerulea) undergoing nitrogen deposition over several decades. The spatial analysis was based on pin-point cover data from 114 Danish sites with a total of 1509 randomly placed plots along a nitrogen deposition gradient. The temporal analysis was based on pin-point cover data from 22 sites with a total of 986 observations from plots that had been resampled at least three times since 2007. The spatial variation was partially explained by nitrogen deposition, as the cover of Erica decreased significantly with nitrogen deposition, whereas the cover of both Calluna and Molinia increased (albeit non-significantly) with nitrogen deposition. There was a strong and significant positive spatial covariation between Erica and Calluna. Oppositely, there was a strong and significant negative spatial covariation between Calluna and Molinia. The spatial covariation between Erica and Molinia was not significantly different from zero. There were no significant changes in the cover of any of the three species since 2007. However, by including data from 2004, the previously reported result of a significant decreasing cover of Erica was confirmed, and the cover of Calluna increased significantly. We conclude that the statistical modelling of joint species abundance is a potentially powerful tool to understand the effect of the alteration of nitrogen dynamics on community composition. This is essential to design management practices aligned with the predicted effects of varying levels of nitrogen deposition on community structure. The study also demonstrated the insight gained on the community dynamics by the use of hierarchical Bayesian models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aber JD, Goodale CL, Ollinger SV, Smith M-L, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389

    Article  Google Scholar 

  • Aerts R (1993a) Biomass and nutrient dynamics of dominant plant species from heathland. In: Heathlands. Patterns and processes in a changing environment (eds. R. Aerts & G. W. Heil). Geobotany 20:51–84

    Google Scholar 

  • Aerts R (1993b) Competition between dominant plant species in heathlands. In: Aerts R, Heil GW (eds) Heathlands: patterns and processes in a changing environment. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Aerts R, Berendse F (1988) The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio 76:63–69

    Google Scholar 

  • Aerts R, Ludwig F (1997) Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biol Biochem 29:1691–1698

    Article  CAS  Google Scholar 

  • Bak JL (2014) Critical loads for nitrogen based on criteria for biodiversity conservation. Water Air Soil Pollut 225:1–13

    Article  CAS  Google Scholar 

  • Bannister P (1966) Erica tetralix L. J Ecol 54:795–813

    Article  Google Scholar 

  • Berendse F (1994) Competition between plant populations at low and high nutrient supplies. Oikos 71:253–260

    Article  Google Scholar 

  • Berendse F (1998) Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry 42:73–88

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore MR, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, de Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  CAS  PubMed  Google Scholar 

  • Boot RGA, Mensink M (1990) Size and morphology of root systems of perennial grasses from contrasting habitats as affected by nitrogen supply. Plant Soil 129:291–299

    Article  CAS  Google Scholar 

  • Bowman WD, Cleveland CC, Halada L, Hresko J, Baron JS (2008) Negative impact of nitrogen deposition on soil buffering capacity. Nat Geosci 1:767–770

    Article  CAS  Google Scholar 

  • Bradshaw AD, Chadwick MJ, Jowett D, Lodge RW, Snaydon RW (1960) Experimental investigations into the mineral nutrition of several grass species: part III. Phosphate level. J Ecol 48:631–637

    Article  Google Scholar 

  • Bradshaw AD, Chadwick MJ, Jowett D, Snaydon RW (1964) Experimental investigations into the mineral nutrition of several grass species: IV. Nitrogen level. J Ecol 52:665–676

    Article  Google Scholar 

  • Caporn SJM, Carroll JA, Dise NB, Payne RJ (2014) Impacts and indicators of nitrogen deposition in moorlands: results from a national pollution gradient study. Ecol Ind 45:227–234

    Article  CAS  Google Scholar 

  • Clark JS, Gelfand AE, Woodall CW, Zhu K (2013) More than the sum of the parts: forest climate response from joint species distribution models. Ecol Appl 24:990–999

    Article  Google Scholar 

  • Craine JM (2009) Resource strategies of wild plants. Princeton University Press, Princeton

    Book  Google Scholar 

  • Damgaard C (2009) On the distribution of plant abundance data. Ecol Inform 4:76–82

    Article  Google Scholar 

  • Damgaard C (2012) Trend analyses of hierarchical pin-point cover data. Ecology 93:1269–1274

    Article  PubMed  Google Scholar 

  • Damgaard C (2013) Hierarchical and spatially aggregated plant cover data. Ecol Inform 18:35–39

    Article  Google Scholar 

  • Damgaard C (2015) Modelling pin-point cover data of complementary vegetation classes. Ecol Inform 30:179–184

    Article  Google Scholar 

  • Damgaard C, Strandberg MT, Kristiansen SM, Nielsen KE, Bak JL (2014) Is Erica tetralix abundance on wet heathlands controlled by nitrogen deposition or soil acidification? Environ Pollut 184:1–8

    Article  CAS  PubMed  Google Scholar 

  • Degn HJ (2006) Lyng og græs på Randbøl Hede 2005 - de store linier. Naturstyrelsen, Randbøl Skovdistrikt, p 12

    Google Scholar 

  • Dise NB, Ashmore M, Belyazid S, Bleeker A, Bobbink R, de Vries W, Erisman JW, Spranger T, Stevens CJ, van den Berg L (2011) Nitrogen as a threat to European terrestrial biodiversity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ellermann T, Andersen HV, Bossi B, Christensen J, Løfstrøm P, Monies C, Grundahl L, Geels C (2012) Atmosfærisk deposition 2011—NOVANA. Nationalt Center for Miljø og Energi, Aarhus

    Google Scholar 

  • Ellermann T, Bossi R, Christensen J, Løfstrøm P, Monies C, Grundahl L, Geels C (2015) Atmosfærisk deposition 2014. NOVANA. Aarhus Universitet, DCE-Nationalt Center for Miljø og Energi. Videnskabelig rapport fra DCE - Nationalt Center for Miljø og Energi, p. 88

  • EU (2003) Interpretation manual of European Union habitats. Natura 2000. European Commission. European Commission, DG Environment, Nature and Biodiversity

  • Field CD, Dise NB, Payne RJ, Britton AJ, Emmett BA, Helliwell RC, Hughes S, Jones L, Lees S, Leake JR, Leith ID, Phoenix GK, Power SA, Sheppard LJ, Southon GE, Stevens CJ, Caporn SJM (2014) The role of nitrogen deposition in widespread plant community change across semi-natural habitats. Ecosystems 17:864–877

    Article  CAS  Google Scholar 

  • Gimingham CH (1960) Biological flora of the British Isles. No. 74. Calluna vulgaris (L.) Hull. J Ecol 48:455–483

    Article  Google Scholar 

  • Gimingham C (1978) Calluna and its associated species: some aspects of co-existence in communities. Plant Ecol 36:179–186

    Article  Google Scholar 

  • Gimingham CH (1988) A reappraisal of cyclical processes in Calluna heath. Vegetatio 77:61–64

    Article  Google Scholar 

  • Gimingham CH (1992) The lowland heathland management handbook. English Nature, Peterborough

    Google Scholar 

  • Gimingham CH, Chapman SB, Webb NR (1979) European heathlands. In: Specht RL (ed) Ecosystems of the world 9A. Elsevier, Ansterdam, pp 365–386

    Google Scholar 

  • Gimingham CH, Hobbs RJ, Mallik AU (1981) Community dynamics in relation to management of heathland vegetation in Scotland. Vegetatio 46:149–155

    Article  Google Scholar 

  • Grant SA, Hunter RF, Cross C (1963) The effects of muirburning Molinia-dominant communities. J Br Grassl Soc 18:249–257

    Article  CAS  Google Scholar 

  • Grant SA, Lamb WIC, Kerr CD, Bolton GR (1976) The utilization of blanket bog vegetation by grazing sheep. J Appl Ecol 13:857–869

    Article  Google Scholar 

  • Grant SA, Torvell L, Common TG, Sim EM, Small JL (1996) Controlled grazing studies on Molinia grassland: effects of different seasonal patterns and levels of defoliation on Molinia growth and responses of swards to controlled grazing by cattle. J Appl Ecol 33:1267–1280

    Article  Google Scholar 

  • Hampton M (2008) Management of natura 2000 habitats. 4010 Northern Atlantic wet heaths with Erica tetralix. European Commission

  • Heil GW, Bruggink M (1987) Competition for nutrients between Calluna vulgaris (L.) Hull and Molinia caerulea (L.) Moench. Oecologia 73:105–108

    Article  Google Scholar 

  • Hodges SC (2010) Soil fertility basics, soil science extension. North Carolina State University, Raleigh

    Google Scholar 

  • Jensen RH, Jensen KM (1979) Kulturlandskabet i Borris og Sdr. Felding - en kortbladsanalyse af et vestjysk landbrugssamfund og en dokumentation for dets udvikling. Geografisk Tidsskrift 78/79:61–99

    Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Levy EB, Madden EA (1933) The point method of pasture analyses. N Z J Agric 46:267–279

    Google Scholar 

  • Lindquist B. 1931. Den skandinaviska bokskogens biologi. Svenska Skogsvårdsföeningens Tidskrift 3

  • Maskell LC, Smart SM, Bullock JM, Thompson KEN, Stevens CJ (2010) Nitrogen deposition causes widespread loss of species richness in British habitats. Glob Chang Biol 16:671–679

    Article  Google Scholar 

  • Matejko M, Dore AJ, Hall J, Dore CJ, Błaś M, Kryza M, Smith R, Fowler D (2009) The influence of long term trends in pollutant emissions on deposition of sulphur and nitrogen and exceedance of critical loads in the United Kingdom. Environ Sci Policy 12:882–896

    Article  CAS  Google Scholar 

  • Matson P, Lohse KA, Hall SJ (2002) The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio 31:113–119

    Article  PubMed  Google Scholar 

  • Nielsen KE, Bak JL, Bruus Pedersen M, Damgaard C, Ejrnæs R, Fredshavn JR, Nygaard B, Skov F, Strandberg B, Strandberg M (2012) NATURDATA.DK—Danish monitoring program of vegetation and chemical plant and soil data from non-forested terrestrial habitat types. Biodivers Ecol 4:375

    Article  Google Scholar 

  • Nygaard B, Ejrnæs R, Baattrup-Pedersen A, Fredshavn J (2009) Danske plantesamfund i moser og enge—vegetation, økologi, sårbarhed og beskyttelse. Faglig rapport fra DMU

  • Nygaard B, Damgaard C, Nielsen KE, Bladt J, Ejrnæs R (2015) Terrestriske Naturtyper 2004–2014. NOVANA. Aarhus Universitet, DCE—Nationalt Center for Miljø og Energi

  • Ospina R, Ferrari SLP (2008) Inflated beta distributions. Stat Paper 51:111–126

    Article  Google Scholar 

  • Ovaskainen O, Roy DB, Fox R, Anderson BJ (2016) Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods Ecol Evol 7:428–436

    Article  Google Scholar 

  • Phoenix GK, Emmett BA, Britton AJ, Caporn SJM, Dise NB, Helliwell R, Jones L, Leake JR, Leith ID, Sheppard LJ, Sowerby A, Pilkington MG, Rowe EC, Ashmore MR, Power SA (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Chang Biol 18:1197–1215

    Article  Google Scholar 

  • Ramsey F, Schafer D (2002) The statistical sleuth. A course in methods of data analysis. Duxbury Press, Belmont

    Google Scholar 

  • Rice KC, Herman JS (2012) Acidification of earth: an assessment across mechanisms and scales. Appl Geochem 27:1–14

    Article  CAS  Google Scholar 

  • Rutter AJ (1955) The composition of wet-heath vegetation in relation to the water-table. J Ecol 43:507–543

    Article  Google Scholar 

  • Southon GE, Field C, Caporn SJM, Britton AJ, Power SA (2013) Nitrogen deposition reduces plant diversity and alters ecosystem functioning: field-scale evidence from a Nationwide Survey of UK Heathlands. PLoS ONE 8:e59031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stace C (1999) Field flora of the British Isles. Cambridge University Press, Cambridge

    Google Scholar 

  • Stevens CJ, Caporn SJM, Maskell LC, Smart SM, Dise NB, Gowing DJ (2009) Detecting and attributing air pollution impacts during SSSI condition assessment. JNCC Report

  • Stevens CJ, Mountford JO, Gowing DJG, Bardgett RD (2012) Differences in yield, Ellenberg N value, tissue chemistry and soil chemistry 15 years after the cessation of nitrogen addition. Plant Soil 357:309–319

    Article  CAS  Google Scholar 

  • Strandberg M, Nielsen KE, Damgaard C, Degn HJ (2011) Status og plejemuligheder for klokkelyngdomineret våd hede på Borris Hede. Faglig rapport fra DMU. Aarhus Universitet, Aarhus C

    Google Scholar 

  • Strandberg M, Damgaard C, Degn HJ, Bak JL, Nielsen KE (2012) Evidence for acidification-driven ecosystem collapse of Danish wet heathland. Ambio 41:393–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor K, Rowland AP, Jones HE (2001) Molinia caerulea (L.) Moench. J Ecol 89:126–144

    Article  Google Scholar 

  • Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM (2003) Stimulated growth of Betula pubescens and Molinia caerulea on ombrotrophic bogs: role of high levels of atmospheric nitrogen deposition. J Ecol 91:357–370

    Article  Google Scholar 

  • Usher MB, Thompson DBA (1993) Variation in the upland heathlands of Great Britain: conservation importance. Biol Conserv 66:69–81

    Article  Google Scholar 

  • Valle D, Baiser B, Woodall CW, Chazdon R (2014) Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method. Ecol Lett 17:1591–1601

    Article  PubMed  PubMed Central  Google Scholar 

  • Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10

    Article  PubMed  Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. J Ecol 35:1–22

    Article  Google Scholar 

  • Wolfram S (2015) Mathematica. Wolfram Research Inc., Champaign

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Damgaard.

Additional information

Communicated by Miguel Franco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damgaard, C., Nielsen, K.E. & Strandberg, M. The effect of nitrogen deposition on the vegetation of wet heathlands. Plant Ecol 218, 373–383 (2017). https://doi.org/10.1007/s11258-016-0693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0693-7

Keywords

Navigation