Cross-system user modeling and personalization on the Social Web

  • Fabian Abel
  • Eelco Herder
  • Geert-Jan Houben
  • Nicola Henze
  • Daniel Krause
Original Paper

Abstract

In order to adapt functionality to their individual users, systems need information about these users. The Social Web provides opportunities to gather user data from outside the system itself. Aggregated user data may be useful to address cold-start problems as well as sparse user profiles, but this depends on the nature of individual user profiles distributed on the Social Web. For example, does it make sense to re-use Flickr profiles to recommend bookmarks in Delicious? In this article, we study distributed form-based and tag-based user profiles, based on a large dataset aggregated from the Social Web. We analyze the completeness, consistency and replication of form-based profiles, which users explicitly create by filling out forms at Social Web systems such as Twitter, Facebook and LinkedIn. We also investigate tag-based profiles, which result from social tagging activities in systems such as Flickr, Delicious and StumbleUpon: to what extent do tag-based profiles overlap between different systems, what are the benefits of aggregating tag-based profiles. Based on these insights, we developed and evaluated the performance of several cross-system user modeling strategies in the context of recommender systems. The evaluation results show that the proposed methods solve the cold-start problem and improve recommendation quality significantly, even beyond the cold-start.

Keywords

User modeling Personalization Social Web User profiles Social tagging Cross-system user modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, F., Baumgartner, R., Brooks, A., Enzi, C., Gottlob, G., Henze, N., Herzog, M., Kriesell, M., Nejdl, W., Tomaschewski, K.: The personal publication reader. In: Gil, Y., Motta, E., Richard Benjamins, V., Musen, M.A. (eds.) International Semantic Web Conference (ISWC ’07), vol 3729 of Lecture Notes in Computer Science, pp. 1050–1053. Springer, Heidelberg (2005). ISBN 3-540-29754-5Google Scholar
  2. Abel, F., Henze, N., Krause, D., Plappert, D.: User modeling and user profile exchange for Semantic Web applications. In: Baumeister, J., Atzmüller, M. (eds.) LWA, vol 448 of Technical Report, pp. 4–9. Department of Computer Science, University of Würzburg, Germany, (2008)Google Scholar
  3. Abel, F., Baldoni, M., Baroglio, C., Henze, N., Krause, D., Patti, V.: Context-based ranking in folksonomies. In: Cattuto, Ciro, Ruffo, Giancarlo, Menczer, Filippo (eds.) Proceedings of the 20th ACM Conference on Hypertext and Hypermedia (HT ’09), Torino, Italy, June 29–July 1, 2009, pp. 209–218. ACM, New York (2009). ISBN 978-1-60558-486-7Google Scholar
  4. Abel, F., Heckmann, D., Herder, E., Hidders, J., Houben, G.-J., Krause, D., Leonardi, E., van der Slujis, K.: A framework for flexible user profile mashups. In: Dattolo, A., Tasso, C., Farzan, R., Kleanthous, S., Vallejo, D.B., Vassileva, J. (eds.) International Workshop on Adaptation and Personalization for Web 2.0 co-located with UMAP ’09, pp. 1–10. CEUR Workshop Proceedings, Aachen (2009)Google Scholar
  5. Abel, F., Heckmann, D., Herder, E., Hidders, J., Houben, G.-J., Leonardi, E., van der Sluijs, K.: Definition of an appropriate User Profile format. Technical report, Grapple Project, EU FP7, Reference 215434 (2009). http://wis.ewi.tudelft.nl/grapple-core-d2.1.pdf
  6. Abel, F., Henze, N., Herder, E., Krause, D.: Linkage, aggregation, alignment and enrichment of public user profiles with mypes. In: Blumauer, A., Cyganiak, R., Henze, N., Paschke, A., Pellegrini, T. (eds.) International Conference on Semantic Systems (I-Semantics), Graz, Austria, September 2010. ACM, New York (2010)Google Scholar
  7. Abel F., Henze N., Kawase R., Krause D.: The impact of multifaceted tagging on learning tag relations and search. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) Extended Semantic Web Conference (ESWC ’10), Heraklion, Greece, May 2010, pp. 90–105. Springer, Berlin (2010)Google Scholar
  8. Ankolekar, A., Krötzsch, M., Tran, T., Vrandecic, D.: The two cultures: mashing up Web 2.0 and the Semantic Web. In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) Proceedings of the 16th International Conference on World Wide Web (WWW ’07), pp. 825–834, New York, NY, USA. ACM, New York (2007). ISBN 978-1-59593-654-7Google Scholar
  9. Aroyo L., Dolog P., Houben G.-J., Kravcik M., Naeve A., Nilsson M., Wild F.: Interoperability in pesonalized adaptive learning. J. Educ. Technol. Soc. 9(2), 4–18 (2006)Google Scholar
  10. Assad M., Carmichael D., Kay J., Kummerfeld B.: Personisad: Distributed, active, scrutable model framework for context-aware services. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.) Proceedings of the 5th International Conference on Pervasive computing, pp. 55–72. Springer, Berlin (2007)Google Scholar
  11. Auer, A., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.. DBpedia: A Nucleus for a Web of Open Data. In: Aberer et al. (eds.) The Semantic Web, 6th International Semantic Web Conference (ISWC), 2nd Asian Semantic Web Conference (ASWC), November 2007, pp. 715–728. Springer, Berlin (2007)Google Scholar
  12. Bateman, S., Brooks, C., McCalla, G.: Collaborative tagging approaches for ontological metadata in adaptive elearning systems. In: Proceedings of 4th International Workshop on Applications of Semantic Web Technologies for E-Learning, co-located with 4th International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems. Dublin, Ireland (2006)Google Scholar
  13. Berkovsky S., Kuflik T., Ricci F.: Mediation of user models for enhanced personalization in recommender systems. User Model. User-Adapt. Interact. (UMUAI) 18(3), 245–286 (2008)CrossRefGoogle Scholar
  14. Bischoff, K., Firan, C., Paiu, R., Nejdl, W.: Can all tags be used for search? In: Shanahan, J.G., Amer-Yahia, S., Manolescu, I., Zhang, Y., Evans, D.A., Kolcz, A., Choi, K.-S., Chowdhury, A. (eds.) Proceedings of Conference on Information and Knowledge Management 2008, Napa Valley, CA, USA. ACM, New York (2008)Google Scholar
  15. Bojars, U., Breslin, J.G.: SIOC Core Ontology Specification. Namespace document, DERI, NUI Galway, January 2009. http://rdfs.org/sioc/spec/
  16. Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.91. Namespace document, FOAF Project, November 2007. http://xmlns.com/foaf/0.1/
  17. Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, Methods and Strategies of Web Personalization, vol 4321 of Lecture Notes in Computer Science. Springer, Berlin (2007). ISBN 978-3-540-72078-2Google Scholar
  18. Carmagnola, F., Cena, F.: User identification for cross-system personalisation. Inform. Sci. 179(1–2), 16–32 (2009). ISSN 0020-0255Google Scholar
  19. Carmagnola F., Cena F., Console L., Cortassa O., Gena C., Goy A., Torre I., Toso A., Vernero F.: Tag-based user modeling for social multi-device adaptive guides. User Model. User-Adapt. Interact. (UMUAI) 18(5), 497–538 (2008)CrossRefGoogle Scholar
  20. Carmagnola F., Cena F., Gena C.: User model interoperability: a survey. User Model. User-Adapt. Interact. (UMUAI) 21(3), 285–331 (2011)CrossRefGoogle Scholar
  21. Çelik, T., Marks, K.: rel=”tag”. Draft specification, Microformats.org, January 2005. http://microformats.org/wiki/rel-tag
  22. Çelik, T., Suda, B.: hCard 1.0. Specification, Microformats.org, April 2010. http://microformats.org/wiki/hcard
  23. Dawson, F., Howes, T.: vCard MIME Directory Profile. Request for comments, Internet Engineering Task Force (IETF), Network Working Group, September 1998. http://www.ietf.org/rfc/rfc2426.txt
  24. De Meo P., Quattrone G., Ursino D.: A query expansion and user profile enrichment approach to improve the performance of recommender systems operating on a folksonomy. User Model. User-Adapt. Interact. (UMUAI) 20(1), 41–86 (2010)CrossRefGoogle Scholar
  25. Firan, C., Nejdl, W., Paiu, R.: The Benefit of Using Tag-based Profiles. In: Almeida, V., Baeza-Yates, R. (eds.) Proceedings of 2007 Latin American Web Conference (LA-WEB ’07), pp. 32–41, Washington, DC, USA. IEEE Computer Society, Washington (2007). ISBN 0-7695-3008-7Google Scholar
  26. Geisser, S.: The predictive sample reuse method with applications. J. Am. Stat. Assoc. 70, 320–328 (1975). http://www.jstor.org/pss/2285815 Google Scholar
  27. Gena, C., Cena, F., Vernero, F., Grillo, P.: The evaluation of a social adaptive web site for cultural events. In Brusilovski, P., Chin, D. (eds.) User Modeling and User-Adapted Interaction. Special Issue on Personalization in Social Web Systems (2012)Google Scholar
  28. Gruber, T.: Collective knowledge systems: where the Social Web meets the Semantic Web. Web Semantics 6(1), 4–13 (2008). ISSN 1570-8268Google Scholar
  29. Hammer-Lahav, E.: The OAuth 1.0 Protocol. Request for comments, Internet Engineering Task Force (IETF), April 2010. http://www.ietf.org/rfc/rfc5849.txt
  30. Heckmann D., Schwartz T., Brandherm B., Schmitz M., von Wilamowitz-Moellendorff M.: GUMO—the general user model ontology. In: Ardissono, L., Brna, P., Mitrovic, A. (eds.) Proceedings of the 10th International Conference on User Modeling (UM ’05), vol 3538 of LNCS, pp. 428–432. Springer, Edinburgh (2005)Google Scholar
  31. Hendler J., Shadbolt N., Hall W., Berners-Lee T., Weitzner D.: Web Science: an interdisciplinary approach to understanding the Web. Commun. ACM 51(7), 60–69 (2008)CrossRefGoogle Scholar
  32. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: search and ranking. In: Proceedings of the 3rd European Semantic Web Conference, vol 4011 of LNCS, pp. 411–426, Budva, Montenegro, June 2006. Springer, Heidelberg (2006). ISBN 3-540-34544-2Google Scholar
  33. Iofciu, T., Fankhauser, P., Abel, F., Bischoff, K.: Identifying users across social tagging systems. In: Adamic, L.A., Baeza-Yates, R.A., Counts, S. (eds.) Proceedings of the Fifth International Conference on Weblogs and Social Media. The AAAI Press, Barcelona (2011)Google Scholar
  34. Jameson, A.: Adaptive Interfaces and Agents. The HCI Handbook: Fundamentals, Evolving Technologies and Emerging Applications, pp. 305–330. Erlbaum, Mahwah (2003)Google Scholar
  35. Kay J., Kummerfeld R.J., Lauder P.: Personis: a server for user models. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) Proceedings of Adaptive Hypermedia (AH ’02), vol 2347 of LNCS, pp. 203–212. Springer, Heidelberg (2002)Google Scholar
  36. Kim, H.-N., El Saddik, A.: Exploring Social Tagging for Personalized Community Recommendations. In: Brusilovski, P., Chin, D. (eds.) User Modeling and User-Adapted Interaction. Special Issue on Personalization in Social Web Systems (2012)Google Scholar
  37. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and Abstract Syntax. W3C recommendation, W3C, February 2004. http://www.w3.org/TR/rdf-concepts/
  38. Kobsa, A.: Generic user modeling systems. User Model. User-Adapt. Interact. 11(1–2), 49–63 (2001). ISSN 0924-1868Google Scholar
  39. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7, 76–80 (2003). ISSN 1089-7801Google Scholar
  40. Mehta, B.: Learning from what others know: Privacy preserving cross system personalization. In: Conati, C., McCoy, K.F., Paliouras, G. (eds.) User Modeling, vol 4511 of Lecture Notes in Computer Science, pp. 57–66. Springer, Heidelberg (2007). ISBN 978-3-540-73077-4Google Scholar
  41. Mehta, B.: Cross System Personalization: Enabling Personalization Across Multiple Systems. VDM Verlag, Saarbrücken (2009). ISBN 3639157176, 9783639157178Google Scholar
  42. Mehta, B., Niederee, C., Stewart, A.: Towards cross-system personalization. In: International Conference on Universal Access in Human–Computer Interaction, Las Vegas, Nevada, USA (UAHCI ’05). Lawrence Erlbaum Associates, New Jersey (2005). ISBN 0-8058-5807-5Google Scholar
  43. Michlmayr, E., Cayzer, S.: Learning user profiles from tagging data and leveraging them for personal(ized) information access. In Proceedings of the Workshop on Tagging and Metadata for Social Information Organization, co-located with 16th International World Wide Web Conference (WWW ’07), May 2007Google Scholar
  44. Nowack, B.: OpenSocial/RDF. Namespace document, December 2008. http://web-semantics.org/ns/opensocial
  45. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: bringing order to the Web. Technical report, Stanford Digital Library Technologies Project (1998)Google Scholar
  46. Pirolli, P. Kairam, S.: A knowledge-tracing model of learning from a social tagging system. In: Brusilovski, P., Chin, D. (eds.) User Modeling and User-Adapted Interaction. Special Issue on Personalization in Social Web Systems (2012)Google Scholar
  47. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001). ISSN 1066-8888Google Scholar
  48. Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and place semantics from Flickr tags. In: Kraaij, W., de Vries, A.P., Clarke, C.L.A., Fuhr, N., Kando, N. (eds.) Proceedings of the 30th International ACM SIGIR Conference on Information Retrieval (SIRIR ’07), pp. 103–110. ACM Press, New York (2007). ISBN 9781595935977Google Scholar
  49. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity management. In: DIM ’06: Proceedings of the second ACM Workshop on Digital Identity Management, pp. 11–16. ACM, New York (2006). ISBN 1-59593-547-9Google Scholar
  50. Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web (WWW ’01). pp. 285–295. ACM, New York (2001). ISBN 1-58113-348-0.Google Scholar
  51. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’02), pp. 253–260. ACM, New York (2002). ISBN 1-58113-561-0Google Scholar
  52. Sen, S., Vig, J., Riedl, J.: Tagommenders: connecting users to items through tags. In: Quemada, J., Leon, G., Maarek, Y.S., Nejdl, W. (eds.) Proceedings of the 18th International Conference on World Wide Web (WWW ’09), pp. 671–680. ACM, New York (2009). ISBN 978-1-60558-487-4Google Scholar
  53. Shannon C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetMATHGoogle Scholar
  54. Sigurbjörnsson, B., van Zwol, Roelof: Flickr tag recommendation based on collective knowledge. In: Huai, J., Chen, R., Hon, H.-W., Liu, Y., Ma, W.-Y., Tomkins, A., Zhang, X. (eds.) Proceedings of 17th International World Wide Web Conference (WWW ’08), pp. 327–336. ACM Press, New York (2008)Google Scholar
  55. Stewart, A., Diaz-Aviles, E., Nejdl, W., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme, L.: Cross-tagging for personalized open social networking. In: Cattuto, C., Ruffo, G., Menczer, F. (eds.) Proceedings of the 20th ACM Conference on Hypertext and Hypermedia (Hypertext 2009), Torino, Italy, pp. 271–278. ACM, New York (2009). ISBN 978-1-60558-486-7Google Scholar
  56. Szomszor, M., Alani, H., Cantador, I., O’Hara, K., Shadbolt, N.: Semantic modelling of user interests based on cross-folksonomy analysis. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) International Semantic Web Conference, vol 5318 of Lecture Notes in Computer Science, pp. 632–648. Springer, Berlin (2008). ISBN 978-3-540-88563-4Google Scholar
  57. Vander Wal, T.: Folksonomy. Technical Report, July 2007. http://vanderwal.net/folksonomy.html
  58. van Setten, M., Brussee, R., van Vliet, H., Gazendam, L., van Houten, Y., Veenstra, M.: On the importance of “Who tagged What”. In: Proceedings of the Workshop on the Social Navigation and Community Based Adaptation Technologies, co-located with 4th International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, pp. 552–561, Dublin, Ireland, 2006Google Scholar
  59. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk—a link discovery framework for the web of data. In: 2nd Workshop About Linked Data on the Web (LDOW2009), April 2009Google Scholar
  60. Wang, Y., Cena, F., Carmagnola, F., Cortassa, O., Gena, C., Stash, N., Aroyo, L.: RSS-based interoperability for user adaptive systems. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH, vol 5149 of Lecture Notes in Computer Science, pp. 353–356. Springer, Berlin (2008). ISBN 978-3-540-70984-8Google Scholar
  61. Winer, D.: RSS 2.0 specification. Technical Note, Berkman Center for Internet & Society, July 2003. http://cyber.law.harvard.edu/rss/rss.html
  62. Xu, S., Bao, E., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search. In: Myaeng, S.-H., Oard, D.W., Sebastiani, F., Chua, T.-S., Leong, M.-K. (eds.) Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’08), pp. 155–162. ACM, New York (2008). ISBN 978-1-60558-164-4Google Scholar
  63. Yudelson M., Brusilovsky P., Zadorozhny V.: A user modeling server for contemporary adaptive hypermedia: an evaluation of the push approach to evidence propagation. In: Conati, C., McCoy, K.F., Paliouras, G. (eds.) 11th International Conference on User Modeling (UM ’07), vol 4511 of LNCS, pp. 27–36. Springer, Berlin (2007)Google Scholar
  64. Zang, N., Rosson, M.B., Nasser, V.: Mashups: Who? What? Why? In: Czerwinski, M., Lund, A., Tan, D. (eds.) Proceedings of Conference on Human Factors in Computing Systems on Human factors in computing systems (CHI ’08), pp. 3171–3176. ACM, New York (2008). ISBN 978-1-60558-012-XGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Fabian Abel
    • 1
  • Eelco Herder
    • 2
  • Geert-Jan Houben
    • 1
  • Nicola Henze
    • 2
  • Daniel Krause
    • 2
  1. 1.Web Information SystemsDelft University of TechnologyDelftThe Netherlands
  2. 2.L3S Research CenterLeibniz University HannoverHannoverGermany

Personalised recommendations