A personalized learning content adaptation mechanism to meet diverse user needs in mobile learning environments

  • Jun-Ming Su
  • Shian-Shyong Tseng
  • Huan-Yu Lin
  • Chun-Han Chen
Original Paper

Abstract

With the heterogeneous proliferation of mobile devices, the delivery of learning materials on such devices becomes subject to more and more requirements. Personalized learning content adaptation, therefore, becomes increasingly important to meet the diverse needs imposed by devices, users, usage contexts, and infrastructure. Historical server logs offer a wealth of information on hardware capabilities, learners’ preferences, and network conditions, which can be utilized to respond to a new user request with the personalized learning content created from a previous similar request. In this paper, we propose a Personalized Learning Content Adaptation Mechanism (PLCAM), which applies data mining techniques, including clustering and decision tree approaches, to efficiently manage a large number of historical learners’ requests. The proposed method will intelligently and directly deliver proper personalized learning content with higher fidelity from the Sharable Content Object Reference Model (SCORM)-compliant Learning Object Repository (LOR) by means of the proposed adaptation decision and content synthesis processes. Furthermore, the experimental results indicate that it is efficient and is expected to prove beneficial to learners.

Keywords

Personalized learning content Content adaptation Mobile learning environment Data mining Learning object repository 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basaeed E., Berri J., Zemerly M.J., Benlamri R.: Learner-centric context-aware mobile learning. IEEE Multidiscip. Eng. Educ. Mag. 2(2), 30–33 (2007)Google Scholar
  2. Beekhoven S., Jong U.D., Hout H.V.: Different courses, different students, same results? an examination of differences in study progress of students in different courses. High. Educ. 46(1), 37–59 (2003)CrossRefGoogle Scholar
  3. Buyukkokten, O., Garcia-Molina, H., Paepcke, A.: Seeing the whole in parts: text summarization for Web browsing on handheld devices. In: Proceedings of the 10th International Conference on World Wide Web, pp. 652–662, Hong Kong (2001)Google Scholar
  4. Buyukkokten O., Kaljuvee O., Molina H.G., Paepcke A., Winograd T.: Efficient web browsing on handheld devices using page and form summarization. ACM Transac. Inform. Syst. (TOIS). 20(1), 82–115 (2002)CrossRefGoogle Scholar
  5. CC/PP.: Composite capabilities/preference profiles (CC/PP): structure and vocabularies 2.0. http://www.w3.org/Mobile/CCPP/ (2010)
  6. Chang, H.P., Hung, J.C., Wang, C.C., Weng, M.T., Shih, T.K.: A learning content adaptation tool with templates for different handhelds. In: Proceedings of the 22nd International Conference on Advanced Information Networking and Applications, pp. 457–463 Okinawa, Japan (2008)Google Scholar
  7. Chen, W., Mizoguchi, R.: Communication content ontology for learner model agent in multi-agent architecture. In: Advanced Research in Computers and Communications in Education, Proc. ICCE’99, pp. 95–102 (1999)Google Scholar
  8. Chen G.D., Liu C.C., Ou K.L., Liu B.J.: Discovering decision knowledge from Web log portfolio for managing classroom processes by applying decision tree and data cube technology. J. Educ. Comput. Res. 23(3), 305–332 (2000)CrossRefGoogle Scholar
  9. Chen, Y., Ma, W.Y., Zhang, H.J.: Detecting Web page structure for adaptive viewing on small form factor devices. In: Proceedings of the 12th International Conference on World Wide Web, pp. 225–233, Budapest, Hungary (2003)Google Scholar
  10. Chen C.S., Yang S.J.H., Zhang J.: Enhancing the precision of content analysis in content adaptation using entropy-based fuzzy reasoning. Expert Syst. Appl. (ESWA) 37, 5706–5719 (2010)CrossRefGoogle Scholar
  11. Chen, L. Zhu, R., Zhou, H.: Application of fuzzy ISODATA clustering method in product identity planning. In: Proceedings of IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design, pp. 33–36, Wenzhou, China (2009)Google Scholar
  12. Ding, J., Hillston, J., Laurenson, D.I.: Evaluating the response time of large scale content adaptation systems using performance evaluation process algebra. In: Proceedings of International Communications Conference (ICC2010), pp. 1–5, Cape Town, South Africa (2010)Google Scholar
  13. Dewhurst D.G., Macleod H.A., Norris T.A.M.: Independent student learning aided by computers: an acceptable alternative to lectures?. Comput. Educ. 35, 223–241 (2000)CrossRefGoogle Scholar
  14. DOM.: Document Object Model. http://www.w3.org/DOM/ (2010)
  15. Franzoni, A.L., Assar, S., Defude, B., Rojas, J.: Student learning styles adaptation method based on teaching strategies and electronic media. In: Proceedings of the Eighth IEEE International Conference on Advanced Learning Technologies, pp. 778–782. Santander, Cantabria (2008)Google Scholar
  16. Fudzee, M.F.M., Abawajy, J.: A classification for content adaptation system. In: Proceedings of iiWAS2008, pp. 426–429, Linz, Austria (2008)Google Scholar
  17. Gilbert J.E., Han C.Y.: Adapting instruction in search of a significant difference. J. Netwo. Comput. Appl. 22, 149–160 (1999)CrossRefGoogle Scholar
  18. González-Castaño, F.J., Anido-Rifón, L., Costa-Montenegro E.: A new transcoding technique for PDA browsers, based on content hierarchy. In: Human Computer Interaction With Mobile Devices, pp. 69–80. LNCS, vol. 2411 (2002)Google Scholar
  19. Hall, D.J., Ball, G.B.: ISODATA: a novel method of data analysis and pattern classification. Technical report, Stanford Research Institute, Menlo park, CA (1965)Google Scholar
  20. He J., Gao T., Hao W., Yen I.L., Bastani F.: A flexible content adaptation system using a rule-based approach. IEEE Trans. Knowl. Data Eng. 19(1), 127–140 (2007)CrossRefGoogle Scholar
  21. Hinz, M., Fiala, Z., Wehner F.: Personalization-based optimization of Web interfaces for mobile devices. In: Mobile Human-Computer Interaction—MobileHCI 2004, pp. 741-748. LNCS, vol. 3160 (2004)Google Scholar
  22. Hsiao J.-L., Hung H.-P., Chen M.-S.: Versatile transcoding proxy for internet content adaptation. IEEE Trans. Multimed. 10(4), 646–658 (2008)CrossRefGoogle Scholar
  23. ImageMagicK.: http://www.imagemagick.org/ (2010)
  24. Kolb D.A.: Learning Style Inventory: Technical Manual. McBer, Boston, MA (1976)Google Scholar
  25. Kolb, D.A.: Kolb’s Learning Styles. http://www.businessballs.com/kolblearningstyles.htm (2004)
  26. Kim, W.S., Jang, D.H., Kim, T.Y.: Improved Web content adaptation for visual aspect of mobile services. In: Proceeding of the Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, pp. 402–408 (2008)Google Scholar
  27. Ko, S.K., Choy, Y.C.: A structured documents retrieval method supporting attribute-based structure information. In: Proceedings of the 2002 ACM Symposium on Applied Computing, pp. 668–674. Madrid, Spain (2002)Google Scholar
  28. Kobsa A.: Generic user modeling systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds) The Adaptive Web, pp. 136–154. Springer-Verlag, Heidelberg (2007)CrossRefGoogle Scholar
  29. Laakko T., Hiltunen T.: Adapting Web content to mobile user agents. IEEE Internet Comput. 9(2), 46–53 (2005)CrossRefGoogle Scholar
  30. Lee, S.H., Lee, J.H., Lee, E.: An inference engine for personalized content adaptation in heterogeneous mobile environment. In: Proceeding of Ubiquitous Computing Systems (UCS 2006), pp. 158–170. LNCS, vol. 4239 (2006)Google Scholar
  31. Lum W., Lau F.: User-centric content negotiation for effective adaptation service in mobile computing. IEEE Trans. Softw. Eng. 29(12), 1100–1111 (2003)CrossRefGoogle Scholar
  32. McIlroy D., Bunting B., Tierney K., Gordon M.: The relation of gender and background experience to self-reported computing anxieties and cognitions. Comput. Hum. Behav. 17, 21–33 (2001)CrossRefGoogle Scholar
  33. Muntean C.H.: Improving learner quality of experience by content adaptation based on network conditions. Comput. Hum. Behav. 24(4), 1452–1472 (2008)CrossRefGoogle Scholar
  34. Mohan R., Smith J.R., Chung S.L.: Adapting multimedia internet content for universal access. IEEE Trans. Multimed. 1(1), 104–114 (1999)CrossRefGoogle Scholar
  35. Mohomed, I., Chin, A., Cai, J.C., Lara, E.: Community-driven adaptation: automatic content adaptation in pervasive environments. In: Proceeding of IEEE Workshop Mobile Computing Systems & Applications (WMCSA), pp. 124–133 (2004)Google Scholar
  36. Mohomed, I., Cai, J.C.M., Lara, E.: URICA: UsageawaRe interactive content adaptation for mobile devices. In: Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006 (EuroSys’06), pp. 345–358, Leuven, Belgium (2006a)Google Scholar
  37. Mohomed, I., Cai, J.C.M., Chavoshi, S., Lara, E.: ContextAware interactive content adaptation. In: Proceedings of the 4th International Conference on Mobile systems, Applications and Services (MobiSys’06), pp. 42–55, Uppsala, Sweden (2006b)Google Scholar
  38. Mohomed, I., Scannell, A., Bila, N., Zhang J., Lara, E.: Correlation-based content adaptation for mobile Web browsing. In: Proceedings of the ACM/IFIP/USENIX 2007 International Conference on Middleware, pp. 101–120. LNCS, vol. 4834 (2007)Google Scholar
  39. Mylonas P., Tzouveli P., Kollias S.: E-learning and intelligent content adaptation: an integrated approach. Int. J. Contin. Eng. Educ. Life Long Learn. 17(4–5), 273–293 (2007)CrossRefGoogle Scholar
  40. Nimmagadda, Y., Kumar, K., Lu, Y.H.: Adaptation of multimedia presentations for different display sizes in the presence of preferences and temporal constraints. IEEE Trans. Multimed. (2010) (in press)Google Scholar
  41. Pettersson, O., Gil, D.: On the issue of reusability and adaptability in M-learning systems. In: Proceedings of the 6th IEEE International Conference on Wireless, Mobile, and Ubiquitous Technologies in Education, pp. 161–165, Kaohsiung, Taiwan (2010)Google Scholar
  42. Queirós, R., Pinto, M.: EDUMCA: an approach to educational mobile content adaptation. In: Proceedings of 4th Iberian Conference on Systems and Information Technology (CISTI 2009), Povoa de Varzim, Portugal (2009)Google Scholar
  43. Quinlan J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)Google Scholar
  44. Rahimi, E., Shokouhi, S.B., Sadr, A.: A parallelized and pipelined datapath to implement ISODATA algorithm for rosette scan images on a reconfigurable hardware. In: Proceedings of the IEEE International Conference on Granular Computing (GRC 2007), pp. 433–433, Fremont, CA (2007)Google Scholar
  45. Ramaswamy L., Iyengar A., Liu L., Douglis F.: Automatic fragment detection in dynamic web pages and its impact on caching. IEEE Trans. Knowl. Data Eng. 17(6), 859–874 (2005)CrossRefGoogle Scholar
  46. Riding R., Cheema I.: Cognitive styles: an overview and integration. Educ. Psychol. 11, 193–215 (1991)CrossRefGoogle Scholar
  47. Romero, C., Ventura, S. (eds): Data Mining in E-Learning, Advances in Management Information. Vol. 4. WITPress, Southampton (2006)Google Scholar
  48. Romero C., Ventura S.: Educational data mining: a review of the state of the art. IEEE Trans. Syst. Man Cybernet. C Appl. Rev. 40(6), 601–618 (2010)CrossRefGoogle Scholar
  49. SCORM.: Sharable content object reference model 2004. In: Advanced Distributed Learning. http://www.adlnet.org/ (2010)
  50. Smith E.S.: The relationship between learning style and cognitive style. Personal. Individ. Diff. 30, 609–616 (2001)CrossRefGoogle Scholar
  51. Stern, M., Woolf, P.: Adaptive content in an online lecture system. In: Proceedings of the International Conference on Adaptive Hypermedia and Adaptive Web Based Systems, pp. 291–300, Trento, Italy, (2000)Google Scholar
  52. Su J.M., Tseng S.S., Wang C.Y., Lei Y.C., Sung Y.U., Tsai W.N.: A content management scheme in SCORM compliant learning object repository. J. Inf. Sci. Eng. (JISE) 21(5), 1053–1075 (2005)Google Scholar
  53. Tan, P.N., Steinbach, M., Kumar, V. (eds): Introduction to Data Mining. Addison Wesley, New York (2005)Google Scholar
  54. Tong, M.W., Yang, Z.K., Liu, Q.T., Liu, X.N.: A novel content adaptation model under E-learning environment. In: Proceedings of the 36th Annual Frontiers in Education Conference (FIE 2006), pp. 1–5, San Diego, California (2006)Google Scholar
  55. Tretiakov, A., Kinshuk.: A unified approach to mobile adaptation of educational content. In: Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT’04), pp. 101–105, Joensuu, Finland (2004)Google Scholar
  56. UAProf.: User Agent Profile (UAProf): User Agent Profiling Specification. http://www.openmobilealliance.org/tech/affiliates/wap/wap-248-uaprof-20011020-a.pdf (2010)
  57. Villard, L., Roisin, C., Layaïda, N.: An XML-based multimedia document processing model for content adaptation. In: Proceeding of 8th International Conference on Digital Documents and Electronic Publishing. LNCS, vol. 2023, pp. 104–119. Springer, Berlin, Heidelberg (2000)Google Scholar
  58. Wilson E.V.: Student characteristics and computer-mediated communication. Comput. Educ. 34, 67–76 (2000)CrossRefGoogle Scholar
  59. Wong, E.Y.C., Chan, A.T.S., Leong, H.V.: Efficient management of XML contents over wireless environment by Xstream. In: Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 1122–1127, Nicosia, Cyprus (2004)Google Scholar
  60. Yang, S.J.H., Chen, Y.L., Chen, R.: Applying content adaptation technique to enhance mobile learning on blackboard learning system. In: Proceedings of the Seventh IEEE International Conference on Advanced Learning Technologies (ICALT 2007), pp. 247–251, Niigata, Japan (2007a)Google Scholar
  61. Yang S.J.H., Zhang J., Chen R.C.S., Shao N.W.Y.: A unit of info.-based content adaptation method for improving web content accessibility in the mobile internet. ETRI J 29(6), 794–807 (2007b)CrossRefGoogle Scholar
  62. Yang, S.J.H., Zhang J., Huang, A.F.M., Tsai, J.J.P., Yu, P.S.: A context-driven content adaptation planner for improving mobile internet accessibility. In: Proceeding of 2008 IEEE International Conference on Web Services (ICW 2008), pp. 88–95, Beijing, China (2008)Google Scholar
  63. Yin, X.Y., Lee, W.S.: Using link analysis to improve layout on mobile devices. In: Proceedings of the 13th International Conference on World Wide Web, pp. 338–344. New York, NY, USA (2004)Google Scholar
  64. Zhao, X., Ninomiya, T., Anna, F., Okamoto, T.: A context-aware prototype system for adaptive learning content in ubiquitous environment. In: Proceedings of the 2008 IEEE International Symposium on IT in Medicine and Education, pp. 164–168, Xiamen (2008)Google Scholar
  65. Zhu, Z., Tian, Y., Xu, J., Deng, X, Ren, X.: An improved partitioning-based web documents clustering method combining GA with ISODATA. In: Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 208–213, Haikou (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jun-Ming Su
    • 1
  • Shian-Shyong Tseng
    • 2
  • Huan-Yu Lin
    • 3
  • Chun-Han Chen
    • 3
  1. 1.Department of Information and Learning TechnologyNational University of TainanTainanTaiwan
  2. 2.Department of Applied Informatics and MultimediaAsia UniversityTaichungTaiwan
  3. 3.Department of Computer ScienceNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations