Abstract
Background
Acute kidney injury (AKI) is a common and serious complication of sepsis. MicroRNA-22-3p (miR-22-3p) has been found to be involved in septic AKI progression. The purpose of this study was to analyze both the serum and urinary expression of miR-22-3p in septic AKI patients, and evaluated the clinical value of miR-22-3p in the diagnosis and prognosis of sepsis-induced AKI.
Methods
Serum and urinary expression of miR-22-3p was examined using qRT-PCR. The risk factors related with septic AKI onset were assessed using logistic analysis. A receiver-operating characteristic (ROC) curve was constructed to evaluate the diagnostic performance of miR-22-3p, and the Kaplan–Meier survival curves and Cox regression analysis were used to evaluate the predictive value of miR-22-3p for the 28-day survival of septic AKI patients.
Results
Both serum and urinary miR-22-3p expression was decreased and negatively correlated with kidney injury biomarkers in septic AKI patients. MiR-22-3p expression was a risk factor for AKI onset and had diagnostic accuracy in septic AKI patients. The expression of both serum and urinary miR-22-3p was lower in patients who died, and served as a prognostic biomarker to predict 28-day survival in septic AKI patients.
Conclusion
Serum and urinary miR-22-3p was reduced in sepsis-induced AKI patients, and served as a biomarker to predict AKI occurrence and 28-day survival in sepsis patients.
This is a preview of subscription content, access via your institution.




Data availability
All data generated or analyzed during this study are included in this published article.
References
- 1.
Cecconi M, Evans L, Levy M, Rhodes A (2018) Sepsis and septic shock. Lancet 392(10141):75–87
- 2.
Napolitano LM (2018) Sepsis 2018: definitions and guideline changes. Surg Infect (Larchmt) 19(2):117–125
- 3.
Poston JT, Koyner JL (2019) Sepsis associated acute kidney injury. BMJ 364:k4891
- 4.
Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J et al (2014) A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 41(1):3–11
- 5.
Skube SJ, Katz SA, Chipman JG, Tignanelli CJ (2018) Acute kidney injury and sepsis. Surg Infect (Larchmt) 19(2):216–224
- 6.
Bell M, Granath F, Martensson J, Lofberg E, Ekbom A, Martling CR et al (2009) Cystatin C is correlated with mortality in patients with and without acute kidney injury. Nephrol Dial Transplant 24(10):3096–3102
- 7.
Uchino S, Bellomo R, Goldsmith D (2012) The meaning of the blood urea nitrogen/creatinine ratio in acute kidney injury. Clin Kidney J 5(2):187–191
- 8.
Li X, Yao L, Zeng X, Hu B, Zhang X, Wang J et al (2020) miR-30c-5p alleviated pyroptosis during sepsis-induced acute kidney injury via targeting TXNIP. Inflammation. 44(1):217–228
- 9.
Ren GL, Zhu J, Li J, Meng XM (2019) Noncoding RNAs in acute kidney injury. J Cell Physiol 234(3):2266–2276
- 10.
Brandenburger T, Salgado Somoza A, Devaux Y, Lorenzen JM (2018) Noncoding RNAs in acute kidney injury. Kidney Int 94(5):870–881
- 11.
Zhu J, Lin X, Yan C, Yang S, Zhu Z (2019) microRNA-98 protects sepsis mice from cardiac dysfunction, liver and lung injury by negatively regulating HMGA2 through inhibiting NF-kappaB signaling pathway. Cell Cycle 18(16):1948–1964
- 12.
Zheng D, Yu Y, Li M, Wang G, Chen R, Fan GC et al (2016) Inhibition of microRNA 195 prevents apoptosis and multiple-organ injury in mouse models of sepsis. J Infect Dis 213(10):1661–1670
- 13.
Abou El-Khier NT, Zaki ME, Alkasaby NM (2019) Study of MicroRNA-122 as a diagnostic biomarker of sepsis. Egypt J Immunol 26(2):105–116
- 14.
Guo H, Tang L, Xu J, Lin C, Ling X, Lu C et al (2019) MicroRNA-495 serves as a diagnostic biomarker in patients with sepsis and regulates sepsis-induced inflammation and cardiac dysfunction. Eur J Med Res 24(1):37
- 15.
Wu SY, Zhang H, Wu W, Wu YY (2020) Value of serum miR-21-3p in predicting acute kidney injury in children with sepsis. Zhongguo Dang Dai Er Ke Za Zhi 22(3):269–273
- 16.
Zhang J, Wang CJ, Tang XM, Wei YK (2018) Urinary miR-26b as a potential biomarker for patients with sepsis-associated acute kidney injury: a Chinese population-based study. Eur Rev Med Pharmacol Sci 22(14):4604–4610
- 17.
Ge QM, Huang CM, Zhu XY, Bian F, Pan SM (2017) Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS ONE 12(3):e0173292
- 18.
Zhang P, Yi L, Qu S, Dai J, Li X, Liu B et al (2020) The biomarker TCONS_00016233 drives septic AKI by targeting the miR-22-3p/AIFM1 signaling axis. Mol Ther Nucleic Acids 19:1027–1042
- 19.
Wang X, Wang Y, Kong M, Yang J (2020) MiR-22–3p suppresses sepsis-induced acute kidney injury by targeting PTEN. Biosci Rep. https://doi.org/10.1042/BSR20200527
- 20.
Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D et al (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med 31(4):1250–1256
- 21.
Khwaja A (2012) KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120(4):c179–c184
- 22.
Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11(2):R31
- 23.
Tod P, Roka B, Kaucsar T, Szatmari K, Vizovisek M, Vidmar R et al (2020) Time-dependent miRNA profile during septic acute kidney injury in mice. Int J Mol Sci. 21(15):5316
- 24.
Shen Y, Yu J, Jing Y, Zhang J (2019) MiR-106a aggravates sepsis-induced acute kidney injury by targeting THBS2 in mice model. Acta Cir Bras 34(6):e201900602
- 25.
Qin Y, Wang G, Peng Z (2019) MicroRNA-191–5p diminished sepsis-induced acute kidney injury through targeting oxidative stress responsive 1 in rat models. Biosci Rep. https://doi.org/10.1042/BSR20190548
- 26.
Lin Y, Ding Y, Song S, Li M, Wang T, Guo F (2019) Expression patterns and prognostic value of miR-210, miR-494, and miR-205 in middle-aged and old patients with sepsis-induced acute kidney injury. Bosn J Basic Med Sci 19(3):249–256
- 27.
Huo R, Dai M, Fan Y, Zhou JZ, Li L, Zu J (2017) Predictive value of miRNA-29a and miRNA-10a-5p for 28-day mortality in patients with sepsis-induced acute kidney injury. Nan Fang Yi Ke Da Xue Xue Bao 37(5):646–651
- 28.
Liu Y, Guan H, Zhang JL, Zheng Z, Wang HT, Tao K et al (2018) Acute downregulation of miR-199a attenuates sepsis-induced acute lung injury by targeting SIRT1. Am J Physiol Cell Physiol 314(4):C449–C455
- 29.
Zhu C, Chen T, Liu B (2018) Inhibitory effects of miR-25 targeting HMGB1 on macrophage secretion of inflammatory cytokines in sepsis. Oncol Lett 16(4):5027–5033
- 30.
Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407
Funding
None.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Ethical approval
A signed written informed consent was obtained from each patient and the experimental procedures were all in accordance with the guideline of the Ethics Committee of The Affiliated Hospital of Qingdao University.
Informed consent
Written informed consent for publication was obtained from each participant.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, H., Che, L., Wang, Y. et al. Deregulated microRNA-22-3p in patients with sepsis-induced acute kidney injury serves as a new biomarker to predict disease occurrence and 28-day survival outcomes. Int Urol Nephrol (2021). https://doi.org/10.1007/s11255-021-02784-z
Received:
Accepted:
Published:
Keywords
- Sepsis
- Acute kidney injury
- MicroRNA-22-3p
- Diagnosis
- Prognosis
- Biomarker