Renoprotective effects of estrogen on acute kidney injury: the role of SIRT1

Abstract

Acute kidney injury (AKI) is a common syndrome associated with high morbidity and mortality, despite progress in medical care. Many studies have shown that there are sex differences and different role of sex hormones particularly estrogens in kidney injury. In this regard, the incidence and rate of progression of kidney diseases are higher in men compared with women. These observations suggest that female sex hormone may be renoprotective. Silent information regulator 2 homolog 1 (SIRT1) is a histone deacetylase, which is implicated in multiple biologic processes in several organisms. In the kidneys, SIRT1 inhibits renal cell apoptosis, inflammation, and fibrosis. Studies have reported a link between SIRT1 and estrogen. In addition, SIRT1 regulates ERα expression and inhibition of SIRT1 activity suppresses ERα expression. This effect leads to inhibition of estrogen-responsive gene expression. In this text, we review the role of SIRT1 in mediating the protective effects of estrogen in the onset and progression of AKI.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Tao LP, Burdmann E, Mehta R. Acute kidney injury: global health alert. 2013.

  2. 2.

    National CGCU. Acute Kidney Injury: Prevention, Detection and Management Up to the Point of Renal Replacement Therapy. 2013.

  3. 3.

    Koza Y (2016) Acute kidney injury: current concepts and new insights. J Injury Violence Res 8(1):58

    Google Scholar 

  4. 4.

    Hsu C-Y, McCulloch C, Fan D, Ordonez J, Chertow G, Go A (2007) Community-based incidence of acute renal failure. Kidney Int 72(2):208–212

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Nash K, Hafeez A, Hou S (2002) Hospital-acquired renal insufficiency. Am J Kidney Dis 39(5):930–936

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Hoste EA, Schurgers M (2008) Epidemiology of acute kidney injury: how big is the problem? Crit Care Med 36(4):S146–S151

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Rahman M, Shad F, Smith MC (2012) Acute kidney injury: a guide to diagnosis and management. Am Fam Physician 86(7):631–639

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Brar H, Olivier J, Lebrun C, Gabbard W, Fulop T, Schmidt D (2008) Predictors of mortality in a cohort of intensive care unit patients with acute renal failure receiving continuous renal replacement therapy. Am J Med Sci 335(5):342–347

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Guan Y, Hao C-M (2015) SIRT1 and kidney function. Kidney Diseases 1(4):258–265

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Kong L, Wu H, Zhou W, Luo M, Tan Y, Miao L et al (2015) Sirtuin 1: a target for kidney diseases. Mol Med 21(1):87–97

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K et al (2013) Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 19(11):1496–1504

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Gao R, Chen J, Hu Y, Li Z, Wang S, Shetty S et al (2014) Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury. PLoS ONE 9(6):e98909

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Neugarten J. Gender and the progression of renal disease. Am Soc Nephrol; 2002.

  14. 14.

    Dixon A, Maric C (2007) 17β-Estradiol attenuates diabetic kidney disease by regulating extracellular matrix and transforming growth factor-β protein expression and signaling. Am J Physiol-Renal Physiol 293(5):F1678–F1690

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Müller V, Szabó A, Viklicky O, Gaul I, Pörtl S, Philipp T et al (1999) Sex hormones and gender-related differences: their influence on chronic renal allograft rejection. Kidney Int 55(5):2011–2020

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Park KM, Kim JI, Ahn Y, Bonventre AJ, Bonventre JV (2004) Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem 279(50):52282–52292

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Metcalfe PD, Leslie JA, Campbell MT, Meldrum DR, Hile KL, Meldrum KK (2008) Testosterone exacerbates obstructive renal injury by stimulating TNF-α production and increasing proapoptotic and profibrotic signaling. Am J Physiol-Endocrinol Metab 294(2):E435–E443

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Reed DK, Arany I (2014) Sex hormones differentially modulate STAT3-dependent antioxidant responses during oxidative stress in renal proximal tubule cells. in vivo. 28(6):1097–100.

  19. 19.

    Ibrahim IY, Elbassuoni EA, Ragy MM, Habeeb WN (2013) Gender difference in the development of cardiac lesions following acute ischemic-reperfusion renal injury in albino rats. Gen Physiol Biophys 32(3):421–428

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Ghazvini H, Khaksari M, Esmaeilpour K, Shabani M, Asadi-Shekaari M, Khodamoradi M et al (2016) Effects of treatment with estrogen and progesterone on the methamphetamine-induced cognitive impairment in ovariectomized rats. Neurosci Lett 619:60–67

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Khaksari M, Mahmoodi M, Rezvani ME, Sajjadi MA, Karam GA, Hajizadeh S. Differences between male and female students in cardiovascular and endocrine responses to examination stress. Journal of Ayub Medical College Abbottabad. 2005;17(2).

  22. 22.

    Group KDIGHOW (2012) Definition and classification of acute kidney injury. Kidney Int 2(Suppl 2):19–36.

  23. 23.

    Makris K, Spanou L (2016) Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin Biochem Rev 37(2):85

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lameire N, Van Biesen W, Vanholder R (2008) Acute kidney injury. The Lancet 372(9653):1863–1865

    Article  Google Scholar 

  25. 25.

    Ozer JS, Dieterle F, Troth S, Perentes E, Cordier A, Verdes P et al (2010) A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol 28(5):486–494

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Obermüller N, Geiger H, Weipert C, Urbschat A (2014) Current developments in early diagnosis of acute kidney injury. Int Urol Nephrol 46(1):1–7

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  27. 27.

    Makris K, Kafkas N (2012) Neutrophil gelatinase-associated lipocalin in acute kidney injury. Adv Clin Chem 58:143

    Google Scholar 

  28. 28.

    Xue W, Xie Y, Wang Q, Xu W, Mou S, Ni Z (2014) Diagnostic performance of urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin for acute kidney injury in an obstructive nephropathy patient. Nephrology 19(4):186–194

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, Group NM-aI. (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54(6):1012–24.

  30. 30.

    Blantz RC (1998) Pathophysiology of pre-renal azotemia. Kidney Int 53(2):512–523

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Kaufman J, Dhakal M, Patel B, Hamburger R (1991) Community-acquired acute renal failure. Am J Kidney Dis 17(2):191–198

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Basile DP, Anderson MD, Sutton TA (2011) Pathophysiology of acute kidney injury. Comprehensive Physiol 2(2):1303–1353

    Google Scholar 

  33. 33.

    Rickert E, Fernandez MO, Choi I, Gorman M, Olefsky JM, Webster NJ (2019) Neuronal SIRT1 regulates metabolic and reproductive function and the response to caloric restriction. J Endocrine Soc 3(2):427–445

    CAS  Article  Google Scholar 

  34. 34.

    McBurney MW, Clark-Knowles KV, Caron AZ, Gray DA (2013) SIRT1 is a highly networked protein that mediates the adaptation to chronic physiological stress. Genes Cancer 4(3–4):125–134

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Chang H-C, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25(3):138–145

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Bouras T, Fu M, Sauve AA, Wang F, Quong AA, Perkins ND et al (2005) SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 280(11):10264–10276

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Guarente L (2013) Introduction: sirtuins in aging and diseases. Springer, Sirtuins, pp 3–10

    Google Scholar 

  38. 38.

    Verdin E, Hirschey MD, Finley LW, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35(12):669–675

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Xu D, He H, Jiang X, Hua R, Chen H, Yang L et al (2019) SIRT2 plays a novel role on progesterone, estradiol and testosterone synthesis via PPARs/LXRα pathways in bovine ovarian granular cells. J Steroid Biochem Mol Biol 185:27–38

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PloS One. 2008;3(4).

  41. 41.

    Wang R-H, Sengupta K, Li C, Kim H-S, Cao L, Xiao C et al (2008) Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14(4):312–323

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Bindu S, Pillai VB, Gupta MP (2016) Role of sirtuins in regulating pathophysiology of the heart. Trends Endocrinol Metab 27(8):563–573

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Yacoub R, Lee K, He JC (2014) The role of SIRT1 in diabetic kidney disease. Front Endocrinol 5:166

    Article  Google Scholar 

  44. 44.

    Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science (New York, NY) 305(5682):390–392

    CAS  Article  Google Scholar 

  45. 45.

    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434(7029):113–118

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Bordone L, Cohen D, Robinson A, Motta MC, Van Veen E, Czopik A et al (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6(6):759–767

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S-i, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. The Journal of clinical investigation. 2010;120(4):1043–55.

  48. 48.

    Guarente L, Picard F (2005) Calorie restriction—the SIR2 connection. Cell 120(4):473–482

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73(1):417–435

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Imai S-i (2009) The NAD World: a new systemic regulatory network for metabolism and aging—Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys 53(2):65

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Gu X, Wang Z, Ye Z, Lei J, Li L, Su D et al (2014) Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure. Genet Mol Res 13(1):323–335

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Das DK, Maulik N (2006) Resveratrol in cardioprotection: a therapeutic promise of alternative medicine. Mol Interventions 6(1):36

    CAS  Article  Google Scholar 

  55. 55.

    Labinskyy N, Csiszar A, Veress G, Stef G, Pacher P, Oroszi G et al (2006) Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen. Curr Med Chem 13(9):989–996

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Mattagajasingh I, Kim C-S, Naqvi A, Yamamori T, Hoffman TA, Jung S-B et al (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci 104(37):14855–14860

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Stef G, Csiszar A, Lerea K, Ungvari Z, Veress G (2006) Resveratrol inhibits aggregation of platelets from high-risk cardiac patients with aspirin resistance. J Cardiovasc Pharmacol 48(2):1–5

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Colak Y, Ozturk O, Senates E, Tuncer I, Yorulmaz E, Adali G, et al. SIRT1 as a potential therapeutic target for treatment of nonalcoholic fatty liver disease. Medical science monitor: international medical journal of experimental and clinical research. 2011;17(5):HY5.

  59. 59.

    Deng XQ, Chen LL, Li NX (2007) The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liv Int 27(5):708–715

    CAS  Article  Google Scholar 

  60. 60.

    Chen L, Deng X, Li N (2007) Effects of calorie restriction on SIRT1 expression in liver of nonalcoholic fatty liver disease: experiment with rats. Zhonghua yi xue za zhi 87(20):1434–1437

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Imai S-I, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Vaziri H, Dessain SK, Eaton EN, Imai S-I, Frye RA, Pandita TK et al (2001) hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107(2):149–159

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23(12):2369–2380

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science (New York, NY) 303(5666):2011–2015

    CAS  Article  Google Scholar 

  65. 65.

    Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W et al (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116(4):551–563

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Li X, Zhang S, Blander G, Jeanette GT, Krieger M, Guarente L (2007) SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 28(1):91–106

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  67. 67.

    Grimaldi B, Nakahata Y, Kaluzova M, Masubuchi S, Sassone-Corsi P (2009) Chromatin remodeling, metabolism and circadian clocks: the interplay of CLOCK and SIRT1. Int J Biochem Cell Biol 41(1):81–86

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D et al (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134(2):329–340

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Yamazaki Y, Usui I, Kanatani Y, Matsuya Y, Tsuneyama K, Fujisaka S et al (2009) Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am J Physiol-Endocrinol Metab 297(5):E1179–E1186

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Dong Y-j, Liu N, Xiao Z, Sun T, Wu S-h, Sun W-x, et al. Renal protective effect of sirtuin 1. Journal of diabetes research. 2014;2014.

  71. 71.

    Chen K-H, Hung C-C, Hsu H-H, Jing Y-H, Yang C-W, Chen J-K (2011) Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-β/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats. Chem Biol Interact 190(1):45–53

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Xu Y, Nie L, Yin Y-G, Tang J-L, Zhou J-Y, Li D-D et al (2012) Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol Appl Pharmacol 259(3):395–401

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Fan H, Yang H-C, You L, Wang Y-Y, He W-J, Hao C-M (2013) The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int 83(3):404–413

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Simic P, Williams EO, Bell EL, Gong JJ, Bonkowski M, Guarente L (2013) SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep 3(4):1175–1186

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Ohse T, Vaughan MR, Kopp JB, Krofft RD, Marshall CB, Chang AM et al (2010) De novo expression of podocyte proteins in parietal epithelial cells during experimental glomerular disease. American Journal of Physiology-Renal Physiology 298(3):F702–F711

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Zhang J, Hansen KM, Pippin JW, Chang AM, Taniguchi Y, Krofft RD et al (2012) De novo expression of podocyte proteins in parietal epithelial cells in experimental aging nephropathy. Am J Physiol-Renal Physiol 302(5):F571–F580

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Lin Q, Geng Y, Lin S, Tian Z (2016) Sirtuin1 (SIRT1) regulates tumor necrosis factor-alpha (TNF-α-Induced) aquaporin-2 (AQP2) expression in renal medullary collecting duct cells through inhibiting the NF-κB pathway. Med Sci Monitor Basic Res 22:165

    Article  Google Scholar 

  78. 78.

    Kim DH, Jung YJ, Lee JE, Lee AS, Kang KP, Lee S et al (2011) SIRT1 activation by resveratrol ameliorates cisplatin-induced renal injury through deacetylation of p53. Am J Physiol-Renal Physiol 301(2):F427–F435

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Chuang PY, Dai Y, Liu R, He H, Kretzler M, Jim B, et al. Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS One. 2011;6(8).

  80. 80.

    Miyazaki R, Ichiki T, Hashimoto T, Inanaga K, Imayama I, Sadoshima J et al (2008) SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 28(7):1263–1269

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Gao R, Chen J, Hu Y, Li Z, Wang S, Shetty S, et al. Sirt1 deletion leads to enhanced inflammation and aggravates endotoxin-induced acute kidney injury. PLoS One. 2014;9(6).

  82. 82.

    Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132(3):344–362

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Wu H, Kong L, Zhou S, Cui W, Xu F, Luo M, et al. The role of microRNAs in diabetic nephropathy. Journal of diabetes research. 2014;2014.

  84. 84.

    Shimo T, Adachi Y, Yamanouchi S, Tsuji S, Kimata T, Umezawa K et al (2013) A novel nuclear factor κB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates puromycin aminonucleoside-induced nephrosis in mice. Am J Nephrol 37(4):302–309

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Jung YJ, Lee JE, Lee AS, Kang KP, Lee S, Park SK et al (2012) SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells. Biochem Biophys Res Commun 419(2):206–210

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Matsushita N, Takami Y, Kimura M, Tachiiri S, Ishiai M, Nakayama T et al (2005) Role of NAD-dependent deacetylases SIRT1 and SIRT2 in radiation and cisplatin-induced cell death in vertebrate cells. Genes Cells 10(4):321–332

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H et al (2010) Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J Biol Chem 285(17):13045–13056

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Kaushal GP (2012) Autophagy protects proximal tubular cells from injury and apoptosis. Kidney Int 82(12):1250–1253

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci 105(9):3374–3379

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Ginsburg ES, Owen Jr WF, editors. Reproductive Endocrinology and Pregnancy in Women on Hemodialysis: Endocrine and Metabolic Function in Renal Failure Garabed Eknoyan, Series Editor. Seminars in Dialysis; 1993: Wiley Online Library.

  91. 91.

    Ahmed SB, Ramesh S (2016) Sex hormones in women with kidney disease. Nephrol Dial Transpl 31(11):1787–1795

    CAS  Article  Google Scholar 

  92. 92.

    Holley JL, Schmidt RJ, Bender FH, Dumler F, Schiff M (1997) Gynecologic and reproductive issues in women on dialysis. Am J Kidney Dis 29(5):685–690

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Anderson GD, Odegard PS (2004) Pharmacokinetics of estrogen and progesterone in chronic kidney disease. Adv Chronic Kidney Dis 11(4):357–360

    PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Mercantepe T, Unal D, Selli J, Mercantepe F, Unal B, Karabiyik TN (2016) Protective effects of estrogen and bortezomib in kidney tissue of post-menopausal rats: an ultrastructural study. Ren Fail 38(7):1129–1135

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Neugarten J, Golestaneh L (2013) Gender and the prevalence and progression of renal disease. Adv Chronic Kidney Dis 20(5):390–395

    PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Nielsen CB, Flyvbjerg A, Bruun JM, Forman A, Wogensen L, Thomsen K (2003) Decreases in renal functional reserve and proximal tubular fluid output in conscious oophorectomized rats: normalization with sex hormone substitution. J Am Soc Nephrol 14(12):3102–3110

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Gross M-L, Adamczak M, Rabe T, Harbi NA, Krtil J, Koch A et al (2004) Beneficial effects of estrogens on indices of renal damage in uninephrectomized SHRsp rats. J Am Soc Nephrol 15(2):348–358

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Potier M, Elliot SJ, Tack I, Lenz O, Striker GE, Striker LJ et al (2001) Expression and regulation of estrogen receptors in mesangial cells: influence on matrix metalloproteinase-9. J Am Soc Nephrol 12(2):241–251

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Naderi V, Khaksari M, Abbasi R, Maghool F (2015) Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury. Iran J Basic Med Sci 18(2):138

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Khaksari M, Abbasloo E, Dehghan F, Soltani Z, Asadikaram G (2015) The brain cytokine levels are modulated by estrogen following traumatic brain injury: Which estrogen receptor serves as modulator? Int Immunopharmacol 28(1):279–287

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Mankhey RW, Bhatti F, Maric C (2005) 17β-Estradiol replacement improves renal function and pathology associated with diabetic nephropathy. Am J Physiol-Renal Physiol 288(2):F399–F405

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Metcalfe PD, Meldrum KK (2006) Sex differences and the role of sex steroids in renal injury. J Urol 176(1):15–21

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Neugarten J, Acharya A, Silbiger SR (2000) Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol 11(2):319–329

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Silbiger SR, Neugarten J (2003) The role of gender in the progression of renal disease. Adv Ren Replace Ther 10(1):3–14

    PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Cherney DZ, Sochett EB, Miller JA (2005) Gender differences in renal responses to hyperglycemia and angiotensin-converting enzyme inhibition in diabetes. Kidney Int 68(4):1722–1728

    PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Wells CC, Riazi S, Mankhey RW, Bhatti F, Ecelbarger C, Maric C (2005) Diabetic nephropathy is associated with decreasedcirculating estradiol levels and imbalance in the expression of renal estrogen receptors. Gend Med 2(4):227–237

    PubMed  Article  Google Scholar 

  107. 107.

    Mankhey RW, Wells CC, Bhatti F, Maric C (2007) 17β-Estradiol supplementation reduces tubulointerstitial fibrosis by increasing MMP activity in the diabetic kidney. Am J Physiol-Regulatory Integrative Comparative Physiol 292(2):R769–R777

    CAS  Article  Google Scholar 

  108. 108.

    Blush J, Lei J, Ju W, Silbiger S, Pullman J, Neugarten J (2004) Estradiol reverses renal injury in Alb/TGF-β1 transgenic mice. Kidney Int 66(6):2148–2154

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Dean S, Tan J, O'Brien E, Leenen F (2005) 17beta-estradiol downregulates tissue 1046 angiotensin-converting enzyme and ANG II type 1 receptor in female rats. Am J Physiol Regul 1047 Integr Comp Physiol. 288(R759–766):1048.

  110. 110.

    Maric C, Sullivan S (2008) Estrogens and the diabetic kidney. Gend Med 5:S103–S113

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Xiao S, Gillespie DG, Baylis C, Jackson EK, Dubey RK (2001) Effects of estradiol and its metabolites on glomerular endothelial nitric oxide synthesis and mesangial cell growth. Hypertension 37(2):645–650

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Neugarten J, Acharya A, Lei J, Silbiger S (2000) Selective estrogen receptor modulators suppress mesangial cell collagen synthesis. Am J Physiol-Renal Physiol 279(2):F309–F318

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Satake A, Takaoka M, Nishikawa M, Yuba M, Shibata Y, Okumura K et al (2008) Protective effect of 17β-estradiol on ischemic acute renal failure through the PI3K/Akt/eNOS pathway. Kidney Int 73(3):308–317

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Lecour S, James RW (2011) When are pro-inflammatory cytokines SAFE in heart failure? Eur Heart J 32(6):680–685

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Wang M, Wang Y, Abarbanell A, Tan J, Weil B, Herrmann J et al (2009) Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion. Surgery 146(2):138–144

    PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Sehara Y, Sawicka K, Hwang J-Y, Latuszek-Barrantes A, Etgen AM, Zukin RS (2013) Survivin is a transcriptional target of STAT3 critical to estradiol neuroprotection in global ischemia. J Neurosci 33(30):12364–12374

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Diaz MN, Rodriguez AR, Martin JF, Arias MS, Rodriguez PM, Andia JC (2007) Effects of estradiol, calcitriol and both treatments combined on bone histomorphometry in rats with chronic kidney disease and ovariectomy. Bone 41(4):614–619

    Article  CAS  Google Scholar 

  118. 118.

    Yap FC, Taylor MS, Lin MT (2014) Ovariectomy-induced reductions in endothelial SK3 channel activity and endothelium-dependent vasorelaxation in murine mesenteric arteries. PLoS ONE 9(8):e104686

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    Singh AP, Singh N, Bedi PMS (2016) Estrogen attenuates renal IRI through PPAR-γ agonism in rats. J Surg Res 203(2):324–330

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Margueron R, Duong V, Castet A, Cavaillès V (2004) Histone deacetylase inhibition and estrogen signalling in human breast cancer cells. Biochem Pharmacol 68(6):1239–1246

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Reid G, Metivier R, Lin C-Y, Denger S, Ibberson D, Ivacevic T et al (2005) Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor α, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene 24(31):4894–4907

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Liarte S, Alonso-Romero JL, Nicolás FJ (2018) SIRT1 and estrogen signaling cooperation for breast cancer onset and progression. Front Endocrinol 9:552

    Article  Google Scholar 

  123. 123.

    Yao Y, Li H, Gu Y, Davidson NE, Zhou Q (2010) Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling. Carcinogenesis 31(3):382–387

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Moore R, Dai Y, Faller D (2012) Sirtuin 1 (SIRT1) and steroid hormone receptor activity in cancer. J Endocrinol 213(1):37

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Sasaki Y, Ikeda Y, Miyauchi T, Uchikado Y, Akasaki Y, Ohishi M. Estrogen-SIRT1 axis plays a pivotal role in protecting arteries against menopause-induced senescence and atherosclerosis. J Atherosclerosis Thrombosis. 2019:47993.

  126. 126.

    Elangovan S, Ramachandran S, Venkatesan N, Ananth S, Gnana-Prakasam JP, Martin PM et al (2011) SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor α in breast cancer. Can Res 71(21):6654–6664

    CAS  Article  Google Scholar 

  127. 127.

    Guo JM, Shu H, Wang L, Xu JJ, Niu XC, Zhang L (2017) SIRT 1-dependent AMPK pathway in the protection of estrogen against ischemic brain injury. CNS Neurosci Ther 23(4):360–369

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Zheng Y, Hu Q, Manaenko A, Zhang Y, Peng Y, Xu L et al (2015) 17β-Estradiol attenuates hematoma expansion through ERα/Sirt1/NF-κB pathway in hyperglycemic intracerebral hemorrhage mice. Stroke 46(2):485

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Shen T, Ding L, Ruan Y, Qin W, Lin Y, Xi C, et al. SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection in angiotensin II-induced heart hypertrophy. Oxidative medicine and cellular longevity. 2014;2014.

  130. 130.

    Zuo H-L, Xin H, Yan X-N, Huang J, Zhang Y-P, Du H. 17β-Estradiol improves osteoblastic cell function through the Sirt1/NF-κB/MMP-8 pathway. Climacteric. 2020:1–6.

  131. 131.

    Khan M, Ullah R, Rehman SU, Shah SA, Saeed K, Muhammad T et al (2019) 17β-Estradiol Modulates SIRT1 and halts oxidative stress-mediated cognitive impairment in a male aging mouse model. Cells 8(8):928

    CAS  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Khaksari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Darvishzadeh Mahani, F., Khaksari, M. & Raji-amirhasani, A. Renoprotective effects of estrogen on acute kidney injury: the role of SIRT1. Int Urol Nephrol (2021). https://doi.org/10.1007/s11255-020-02761-y

Download citation

Keywords

  • Acute kidney injury
  • SIRT1
  • Estrogen
  • Sex hormones
  • Estrogen receptor