Skip to main content
Log in

Intervention of mitochondrial activity attenuates cisplatin-induced acute kidney injury

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Objectives

The dysfunction of mitochondrial respiratory chain induced by cisplatin results in overproduction of reactive oxygen species (ROS) which contributes to kidney injury. The current study aimed to evaluate the effect of a mitochondrial electron transport inhibitors of rotenone (mitochondrial complex I inhibitor) and azoxystrobin (mitochondrial complex III inhibitor), in cisplatin-induced kidney injury.

Methods

In vivo, cisplatin was administered to male C57BL/6J mice by a single intraperitoneal (i.p.) injection (20 mg/kg). Then the mice were treated with or without 200 ppm rotenone in food. Mice were sacrificed after cisplatin administration for 72 h. The serum and the kidney tissues were collected for further analysis. In vitro, mouse proximal tubular cells (mPTCs) were treated with cisplatin (5 µg/mL) and rotenone/azoxystrobin for 24 h. Flow cytometry, Western blotting, and TUNEL staining were used to evaluate the cell injury.

Results

In vivo, rotenone treatment obviously ameliorated cisplatin-induced renal tubular injury evidenced by the improved histology and blocked NGAL upregulation. Meanwhile, cisplatin-induced renal dysfunction shown by the increased levels of serum creatinine (Scr), blood urea nitrogen (BUN), and cystatin C were significantly reduced by rotenone treatment. Moreover, the increments of cleaved caspase-3 and transferase dUTP nick-end labeling (TUNEL)-positive cells were markedly decreased in line with the attenuated mitochondrial dysfunction and oxidative stress after rotenone administration. In vitro, rotenone and azoxystrobin protected against mitochondrial dysfunction, oxidative stress, and renal tubular cell apoptosis induced by cisplatin.

Conclusions

Our results demonstrated that inhibition of mitochondrial activity significantly attenuated cisplatin nephrotoxicity possibly by inhibiting mitochondrial oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cohen SM, Lippard SJ (2001) Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol 67:93–130

    Article  CAS  PubMed  Google Scholar 

  2. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73(9):994–1007. https://doi.org/10.1038/sj.ki.5002786

    Article  CAS  PubMed  Google Scholar 

  3. Manohar S, Leung N (2018) Cisplatin nephrotoxicity: a review of the literature. J Nephrol 31(1):15–25. https://doi.org/10.1007/s40620-017-0392-z

    Article  CAS  PubMed  Google Scholar 

  4. Peres LA, da Cunha AD Jr (2013) Acute nephrotoxicity of cisplatin: molecular mechanisms. Braz J Nephrol 35(4):332–340. https://doi.org/10.5935/0101-2800.20130052

    Article  Google Scholar 

  5. Che R, Yuan Y, Huang S, Zhang A (2014) Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 306(4):F367–F378. https://doi.org/10.1152/ajprenal.00571.2013

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Ye Z, Lai W, Rao J, Huang W, Zhang X, Yao Z, Lou T (2017) Activation of sirtuin 3 by silybin attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Front Pharmacol 8:178. https://doi.org/10.3389/fphar.2017.00178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hovater MB, Olteanu D, Welty EA, Schwiebert EM (2008) Purinergic signaling in the lumen of a normal nephron and in remodeled PKD encapsulated cysts. Purinergic Signal 4(2):109–124. https://doi.org/10.1007/s11302-008-9102-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dhingra R, Kirshenbaum LA (2014) Regulation of mitochondrial dynamics and cell fate. Circ J 78(4):803–810

    Article  CAS  PubMed  Google Scholar 

  9. Devin A, Rigoulet M (2007) Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells. Am J Physiol Cell Physiol 292(1):C52–C58. https://doi.org/10.1152/ajpcell.00208.2006

    Article  CAS  PubMed  Google Scholar 

  10. Zsengeller ZK, Ellezian L, Brown D, Horvath B, Mukhopadhyay P, Kalyanaraman B, Parikh SM, Karumanchi SA, Stillman IE, Pacher P (2012) Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. J Histochem Cytochem 60(7):521–529. https://doi.org/10.1369/0022155412446227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanabe K, Tamura Y, Lanaspa MA, Miyazaki M, Suzuki N, Sato W, Maeshima Y, Schreiner GF, Villarreal FJ, Johnson RJ, Nakagawa T (2012) Epicatechin limits renal injury by mitochondrial protection in cisplatin nephropathy. Am J Physiol Renal Physiol 303(9):F1264–F1274. https://doi.org/10.1152/ajprenal.00227.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bajwa A, Rosin DL, Chroscicki P, Lee S, Dondeti K, Ye H, Kinsey GR, Stevens BK, Jobin K, Kenwood BM, Hoehn KL, Lynch KR, Okusa MD (2015) Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury. J Am Soc Nephrol 26(4):908–925. https://doi.org/10.1681/ASN.2013121351

    Article  CAS  PubMed  Google Scholar 

  13. Arany I, Safirstein RL (2003) Cisplatin nephrotoxicity. Semin Nephrol 23(5):460–464

    Article  CAS  PubMed  Google Scholar 

  14. Kruidering M, Van de Water B, de Heer E, Mulder GJ, Nagelkerke JF (1997) Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain. J Pharmacol Exp Ther 280(2):638–649

    CAS  PubMed  Google Scholar 

  15. Chirino YI, Pedraza-Chaverri J (2009) Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 61(3):223–242. https://doi.org/10.1016/j.etp.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  16. Sun Y, Zhang Y, Zhao D, Ding G, Huang S, Zhang A, Jia Z (2014) Rotenone remarkably attenuates oxidative stress, inflammation, and fibrosis in chronic obstructive uropathy. Mediat Inflamm 2014:670106. https://doi.org/10.1155/2014/670106

    Article  CAS  Google Scholar 

  17. Zhang W, Sha Y, Wei K, Wu C, Ding D, Yang Y, Zhu C, Zhang Y, Ding G, Zhang A, Jia Z, Huang S (2018) Rotenone ameliorates chronic renal injury caused by acute ischemia/reperfusion. Oncotarget 9(36):24199–24208. https://doi.org/10.18632/oncotarget.24733

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rajeevan MS, Ranamukhaarachchi DG, Vernon SD, Unger ER (2001) Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25(4):443–451. https://doi.org/10.1006/meth.2001.1266

    Article  CAS  PubMed  Google Scholar 

  19. Weidemann A, Bernhardt WM, Klanke B, Daniel C, Buchholz B, Campean V, Amann K, Warnecke C, Wiesener MS, Eckardt KU, Willam C (2008) HIF activation protects from acute kidney injury. J Am Soc Nephrol 19(3):486–494. https://doi.org/10.1681/ASN.2007040419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan Y, Huang S, Wang W, Wang Y, Zhang P, Zhu C, Ding G, Liu B, Yang T, Zhang A (2012) Activation of peroxisome proliferator-activated receptor-gamma coactivator 1alpha ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury. Kidney Int 82(7):771–789. https://doi.org/10.1038/ki.2012.188

    Article  CAS  PubMed  Google Scholar 

  21. Oh GS, Kim HJ, Choi JH, Shen A, Choe SK, Karna A, Lee SH, Jo HJ, Yang SH, Kwak TH, Lee CH, Park R, So HS (2014) Pharmacological activation of NQO1 increases NAD(+) levels and attenuates cisplatin-mediated acute kidney injury in mice. Kidney Int 85(3):547–560. https://doi.org/10.1038/ki.2013.330

    Article  CAS  PubMed  Google Scholar 

  22. Oh CJ, Ha CM, Choi YK, Park S, Choe MS, Jeoung NH, Huh YH, Kim HJ, Kweon HS, Lee JM, Lee SJ, Jeon JH, Harris RA, Park KG, Lee IK (2017) Pyruvate dehydrogenase kinase 4 deficiency attenuates cisplatin-induced acute kidney injury. Kidney Int 91(4):880–895. https://doi.org/10.1016/j.kint.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  23. Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng FY, Zhao Z, Ganger M, Tow CY, Seshan SV (2011) Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol 22(6):1041–1052. https://doi.org/10.1681/ASN.2010080808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maimaitiyiming H, Li Y, Cui W, Tong X, Norman H, Qi X, Wang S (2013) Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney injury through protection of mitochondria function. Am J Physiol Renal Physiol 305(6):F881–F890. https://doi.org/10.1152/ajprenal.00192.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oh GS, Kim HJ, Shen A, Lee SB, Khadka D, Pandit A, So HS (2014) Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies. Electrolyte Blood Press 12(2):55–65. https://doi.org/10.5049/EBP.2014.12.2.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(34):10756–10764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324

    Article  CAS  PubMed  Google Scholar 

  28. Ichikawa H, Takagi T, Uchiyama K, Higashihara H, Katada K, Isozaki Y, Naito Y, Yoshida N, Yoshikawa T (2004) Rotenone, a mitochondrial electron transport inhibitor, ameliorates ischemia-reperfusion-induced intestinal mucosal damage in rats. Redox Rep 9(6):313–316. https://doi.org/10.1179/135100004225006795

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (Nos. 81670678, 81830020, 81873599, 81530023, 81770690, 81700642, 81670647, and 81570616), the National Key Research and Development Program (No. 2016YFC0906103), and the Natural Science Foundation of Jiangsu Province (No. BK20170150).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guixia Ding or Songming Huang.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Ethical approval

All animal experiments were performed according to protocols approved by the Institutional Animal Care and Use Committee of Nanjing Medical University (IACUC 14030112-2).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Fu, Y., Wang, P. et al. Intervention of mitochondrial activity attenuates cisplatin-induced acute kidney injury. Int Urol Nephrol 51, 1207–1218 (2019). https://doi.org/10.1007/s11255-019-02113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-019-02113-5

Keywords

Navigation