Skip to main content

Advertisement

Log in

The association between autosomal dominant polycystic kidney disease and cancer

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is considered as a tumor-like disease because there are many biological similarities between ADPKD and cancer. However, the commonalities between them are provocative, particularly under the conditions of recent clinical studies. In this paper, we review clinical studies about the association between cancer and ADPKD, and compare the biological characteristics between them, with focusing on cell proliferation, differentiation, migration, apoptosis, and polarity. With detailed literature reviewing, we believe that ADPKD patients have a higher risk of tumorigenesis and thus highly recommend being aware of tumorigenesis during follow-up in patients with ADPKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torres VE, Harris PC (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76(2):149–168

    Article  PubMed  PubMed Central  Google Scholar 

  2. Patel V, Chowdhury R, Igarashi P (2009) Advances in the pathogenesis and treatment of polycystic kidney disease. Curr Opin Nephrol Hypertens 18(2):99–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grantham JJ (2008) Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med 359(14):1477–1485

    Article  CAS  PubMed  Google Scholar 

  4. Steinman TI (2012) Polycystic kidney disease: a 2011 update. Curr Opin Nephrol Hypertens 21(2):189–194

    Article  CAS  PubMed  Google Scholar 

  5. Sutters M, Germino GG (2003) Autosomal dominant polycystic kidney disease: molecular genetics and pathophysiology. J Lab Clin Med 141(2):91–101

    Article  CAS  PubMed  Google Scholar 

  6. Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369(9569):1287–1301

    Article  PubMed  Google Scholar 

  7. Yao Q, Wu M, Zhou J, Zhou M, Chen D, Fu L et al (2017) Treatment of Persistent Gross Hematuria with Tranexamic Acid in Autosomal Dominant Polycystic Kidney Disease. Kidney Blood Press Res 42(1):156–164

    Article  CAS  PubMed  Google Scholar 

  8. Antignac C, Calvet JP, Germino GG, Grantham JJ, Guay-Woodford LM, Harris PC et al (2015) The Future of Polycystic Kidney Disease Research–As Seen By the 12 Kaplan Awardees. J Am Soc Nephrol 26(9):2081–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Calvet JP, Grantham JJ (2001) The genetics and physiology of polycystic kidney disease. Semin Nephrol 21(2):107–123

    Article  CAS  PubMed  Google Scholar 

  10. Ding Y, Chen L, Deng FM, Melamed J, Fan R, Bonsib S et al (2013) Localized cystic disease of the kidney: distinction from cystic neoplasms and hereditary polycystic diseases. Am J Surg Pathol 37(4):506–513

    Article  PubMed  Google Scholar 

  11. Sahoo N, Patra S, Senapati S, Mishra TS (2017) Multicentric papillary and chromophobe renal cell carcinomas in a patient with autosomal dominant polycystic kidney disease: Report of a rare case. Indian J Pathol Microbiol 60(3):405–408

    Article  PubMed  Google Scholar 

  12. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  13. Ibrahim S (2007) Increased apoptosis and proliferative capacity are early events in cyst formation in autosomal-dominant, polycystic kidney disease. ScientificWorld Journal 7:1757–1767

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wander SA, Hennessy BT, Slingerland JM (2011) Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 121(4):1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaytseva YY, Valentino JD, Gulhati P, Evers BM (2012) mTOR inhibitors in cancer therapy. Cancer Lett 319(1):1–7

    Article  CAS  PubMed  Google Scholar 

  16. Chen G, Chen H, Wang C, Peng Y, Sun L, Liu H et al (2012) Rapamycin ameliorates kidney fibrosis by inhibiting the activation of mTOR signaling in interstitial macrophages and myofibroblasts. PLoS One 7(3):e33626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Novalic Z, van der Wal AM, Leonhard WN, Koehl G, Breuning MH, Geissler EK et al (2012) Dose-dependent effects of sirolimus on mTOR signaling and polycystic kidney disease. J Am Soc Nephrol 23(5):842–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamaguchi T, Nagao S, Wallace DP, Belibi FA, Cowley BD, Pelling JC et al (2003) Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int 63(6):1983–1994

    Article  CAS  PubMed  Google Scholar 

  19. Harris PC, Torres VE (2014) Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest 124(6):2315–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Torres VE, Harris PC (2014) Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol 25(1):18–32

    Article  CAS  PubMed  Google Scholar 

  21. Blair HA, Keating GM. Tolvaptan (2015) A review in autosomal dominant polycystic kidney disease. Drugs 75(15):1797–1806

    Article  CAS  PubMed  Google Scholar 

  22. Wang S, Zhang Z, Qian W, Ji D, Wang Q, Ji B et al (2018) Angiogenesis and vasculogenic mimicry are inhibited by 8-Br-cAMP through activation of the cAMP/PKA pathway in colorectal cancer. Onco Targets Ther 11:3765–3774

    Article  PubMed  PubMed Central  Google Scholar 

  23. Baroni MD, Colombo S, Martegani E (2018) Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. Microb Cell 5(7):344–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong H, Claffey KP, Brocke S, Epstein PM (2015) Inhibition of breast cancer cell migration by activation of cAMP signaling. Breast Cancer Res Treat 152(1):17–28

    Article  CAS  PubMed  Google Scholar 

  25. Schwensen KG, Burgess JS, Graf NS, Alexander SI, Harris DC, Phillips JK et al (2011) Early cyst growth is associated with the increased nuclear expression of cyclin D1/Rb protein in an autosomal-recessive polycystic kidney disease rat model. Nephron Exp Nephrol 117(4):e93–e103

    Article  CAS  PubMed  Google Scholar 

  26. Kim S, Nie H, Nesin V, Tran U, Outeda P, Bai CX et al (2016) The polycystin complex mediates Wnt/Ca(2+) signalling. Nat Cell Biol 18(7):752–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Happe H, Leonhard WN, van der Wal A, van de Water B, Lantinga-van Leeuwen IS, Breuning MH et al (2009) Toxic tubular injury in kidneys from Pkd1-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways. Hum Mol Genet 18(14):2532–2542

    Article  CAS  PubMed  Google Scholar 

  28. Wilson SJ, Amsler K, Hyink DP, Li X, Lu W, Zhou J et al (2006) Inhibition of HER-2(neu/ErbB2) restores normal function and structure to polycystic kidney disease (PKD) epithelia. Biochim Biophys Acta 1762(7):647–655

    Article  CAS  PubMed  Google Scholar 

  29. Nakanishi K, Gattone VH II, Sweeney WE, Avner ED (2001) Renal dysfunction but not cystic change is ameliorated by neonatal epidermal growth factor in bpk mice. Pediatr Nephrol 16(1):45–50

    Article  CAS  PubMed  Google Scholar 

  30. Yamaguchi T, Reif GA, Calvet JP, Wallace DP (2010) Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells. Am J Physiol Renal Physiol 299(5):F944–F951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamaguchi T, Pelling JC, Ramaswamy NT, Eppler JW, Wallace DP, Nagao S et al (2000) cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int 57(4):1460–1471

    Article  CAS  PubMed  Google Scholar 

  32. Leszczyniecka M, Roberts T, Dent P, Grant S, Fisher PB (2001) Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 90(2–3):105–156

    Article  CAS  PubMed  Google Scholar 

  33. Jogi A, Vaapil M, Johansson M, Pahlman S (2012) Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Ups J Med Sci 117(2):217–224

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wachi T, Yoshida N, Funae Y, Ueno M, Germino GG, Hirotsune S et al (2012) Progesterone induced mesenchymal differentiation and rescued cystic dilation of renal tubules of Pkd1(–/–) mice. Biochem Biophys Res Commun 425(2):212–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chauvet V, Tian X, Husson H, Grimm DH, Wang T, Hiesberger T et al (2004) Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 114(10):1433–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33(2):129–137

    Article  CAS  PubMed  Google Scholar 

  37. Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. Bioessays 26(8):844–856

    Article  CAS  PubMed  Google Scholar 

  38. Torres VE, Sweeney WE Jr, Wang X, Qian Q, Harris PC, Frost P et al (2003) EGF receptor tyrosine kinase inhibition attenuates the development of PKD in Han:SPRD rats. Kidney Int 64(5):1573–1579

    Article  CAS  PubMed  Google Scholar 

  39. Zheleznova NN, Wilson PD, Staruschenko A (2011) Epidermal growth factor-mediated proliferation and sodium transport in normal and PKD epithelial cells. Biochim Biophys Acta 1812(10):1301–1313

    Article  CAS  PubMed  Google Scholar 

  40. Li S, Xu W, Xing Z, Qian J, Chen L, Gu R et al (2017) A Conditional Knockout Mouse Model Reveals a Critical Role of PKD1 in Osteoblast Differentiation and Bone Development. Sci Rep 7:40505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Canel M, Serrels A, Frame MC, Brunton VG (2013) E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 126(Pt 2):393–401

    Article  CAS  PubMed  Google Scholar 

  42. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  CAS  PubMed  Google Scholar 

  43. Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11(7):512–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a005058

  45. Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N et al (2013) Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep 5(5):1159–1168

    Article  CAS  PubMed  Google Scholar 

  46. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556

    Article  CAS  PubMed  Google Scholar 

  47. Chen T, Guo J, Yang M, Zhu X, Cao X (2011) Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. J Immunol 186(4):2219–2228

    Article  CAS  PubMed  Google Scholar 

  48. Birchmeier W, Behrens J (1994) Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198(1):11–26

    CAS  PubMed  Google Scholar 

  49. Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13(9):2384–2398

    Article  CAS  PubMed  Google Scholar 

  50. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN et al (2002) PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109(2):157–168

    Article  CAS  PubMed  Google Scholar 

  51. Markoff A, Bogdanova N, Knop M, Ruffer C, Kenis H, Lux P et al (2007) Annexin A5 interacts with polycystin-1 and interferes with the polycystin-1 stimulated recruitment of E-cadherin into adherens junctions. J Mol Biol 369(4):954–966

    Article  CAS  PubMed  Google Scholar 

  52. Charron AJ, Nakamura S, Bacallao R, Wandinger-Ness A (2000) Compromised cytoarchitecture and polarized trafficking in autosomal dominant polycystic kidney disease cells. J Cell Biol 149(1):111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Margadant C, Monsuur HN, Norman JC, Sonnenberg A (2011) Mechanisms of integrin activation and trafficking. Curr Opin Cell Biol 23(5):607–614

    Article  CAS  PubMed  Google Scholar 

  54. Israeli S, Amsler K, Zheleznova N, Wilson PD (2010) Abnormalities in focal adhesion complex formation, regulation, and function in human autosomal recessive polycystic kidney disease epithelial cells. Am J Physiol Cell Physiol 298(4):C831–C846

    Article  CAS  PubMed  Google Scholar 

  55. Zaidel-Bar R, Milo R, Kam Z, Geiger B (2007) A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120(Pt 1):137–148

    CAS  PubMed  Google Scholar 

  56. Zimerman B, Volberg T, Geiger B (2004) Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading. Cell Motil Cytoskeleton 58(3):143–159

    Article  CAS  PubMed  Google Scholar 

  57. Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE et al (2002) The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 22(3):901–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hsia DA, Lim ST, Bernard-Trifilo JA, Mitra SK, Tanaka S, den Hertog J et al (2005) Integrin alpha4beta1 promotes focal adhesion kinase-independent cell motility via alpha4 cytoplasmic domain-specific activation of c-Src. Mol Cell Biol 25(21):9700–9712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Polgar K, Burrow CR, Hyink DP, Fernandez H, Thornton K, Li X et al (2005) Disruption of polycystin-1 function interferes with branching morphogenesis of the ureteric bud in developing mouse kidneys. Dev Biol 286(1):16–30

    Article  CAS  PubMed  Google Scholar 

  60. Wilson PD (2004) Polycystic kidney disease. N Engl J Med 350(2):151–164

    Article  CAS  PubMed  Google Scholar 

  61. Liu H, Radisky DC, Yang D, Xu R, Radisky ES, Bissell MJ et al (2012) MYC suppresses cancer metastasis by direct transcriptional silencing of alphav and beta3 integrin subunits. Nat Cell Biol 14(6):567–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boca M, D’Amato L, Distefano G, Polishchuk RS, Germino GG, Boletta A (2007) Polycystin-1 induces cell migration by regulating phosphatidylinositol 3-kinase-dependent cytoskeletal rearrangements and GSK3beta-dependent cell cell mechanical adhesion. Mol Biol Cell 18(10):4050–4061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu JX, Lu TS, Li S, Wu Y, Ding L, Denker BM et al (2015) Polycystin-1 and Galpha12 regulate the cleavage of E-cadherin in kidney epithelial cells. Physiol Genomics 47(2):24–32

    Article  CAS  PubMed  Google Scholar 

  64. Yao G, Su X, Nguyen V, Roberts K, Li X, Takakura A et al (2014) Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-Pacsin 2-N-Wasp complex. Hum Mol Genet 23(10):2769–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hammerman MR (1998) Renal programmed cell death and the treatment of renal disease. Curr Opin Nephrol Hypertens 7(1):1–3

    Article  CAS  PubMed  Google Scholar 

  66. Savill J (1994) Apoptosis and the kidney. J Am Soc Nephrol 5(1):12–21

    CAS  PubMed  Google Scholar 

  67. Sorenson CM (1998) Life, death and kidneys: regulation of renal programmed cell death. Curr Opin Nephrol Hypertens 7(1):5–12

    Article  CAS  PubMed  Google Scholar 

  68. Philchenkov AA, Balcer-Kubiczek EK (2016) Molecular markers of apoptosis in cancer patients exposed to ionizing radiation: the post-Chornobyl view. Exp Oncol 38(4):224–237

    Article  CAS  PubMed  Google Scholar 

  69. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16(4):273–284

    Article  CAS  PubMed  Google Scholar 

  70. Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT et al (2015) Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 35(Suppl):S78–S103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lanoix J, D’Agati V, Szabolcs M, Trudel M (1996) Dysregulation of cellular proliferation and apoptosis mediates human autosomal dominant polycystic kidney disease (ADPKD). Oncogene 13(6):1153–1160

    CAS  PubMed  Google Scholar 

  72. Woo D (1995) Apoptosis and loss of renal tissue in polycystic kidney diseases. N Engl J Med 333(1):18–25

    Article  CAS  PubMed  Google Scholar 

  73. Zhou XJ, Kukes G (1998) Pathogenesis of autosomal dominant polycystic kidney disease: role of apoptosis. Diagn Mol Pathol 7(2):65–68

    Article  CAS  PubMed  Google Scholar 

  74. Fan LX, Zhou X, Sweeney WE Jr, Wallace DP, Avner ED, Grantham JJ et al (2013) Smac-mimetic-induced epithelial cell death reduces the growth of renal cysts. J Am Soc Nephrol 24(12):2010–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Duplomb L, Droin N, Bouchot O, Thauvin-Robinet C, Bruel AL, Thevenon J et al (2017) A constitutive BCL2 down-regulation aggravates the phenotype of PKD1-mutant-induced polycystic kidney disease. Hum Mol Genet 26(23):4680–4688

    Article  CAS  PubMed  Google Scholar 

  76. Wilson PD (2011) Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta 1812(10):1239–1248

    Article  CAS  PubMed  Google Scholar 

  77. Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13(5):609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Karp CM, Tan TT, Mathew R, Nelson D, Mukherjee C, Degenhardt K et al (2008) Role of the polarity determinant crumbs in suppressing mammalian epithelial tumor progression. Cancer Res 68(11):4105–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Laprise P, Viel A, Rivard N (2004) Human homolog of disc-large is required for adherens junction assembly and differentiation of human intestinal epithelial cells. J Biol Chem 279(11):10157–10166

    Article  CAS  PubMed  Google Scholar 

  80. Weide T, Vollenbroker B, Schulze U, Djuric I, Edeling M, Bonse J et al (2017) Pals1 Haploinsufficiency Results in Proteinuria and Cyst Formation. J Am Soc Nephrol 28(7):2093–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nechiporuk T, Fernandez TE, Vasioukhin V (2007) Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in Dlg5-/- mice. Dev Cell 13(3):338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu D, Lv J, He L, Fu L, Hu R, Cao Y et al. Scribble influences cyst formation in autosomal-dominant polycystic kidney disease by regulating Hippo signaling pathway. FASEB J. 2018:fj201701376RR

  83. Walters WBW. Surgical aspects of polycystic kidney. Surg Obstet Gynecol. 1934:647–50

  84. Keith DS, Torres VE, King BF, Zincki H, Farrow GM (1994) Renal cell carcinoma in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 4(9):1661–1669

    CAS  PubMed  Google Scholar 

  85. Hajj P, Ferlicot S, Massoud W, Awad A, Hammoudi Y, Charpentier B et al (2009) Prevalence of renal cell carcinoma in patients with autosomal dominant polycystic kidney disease and chronic renal failure. Urology 74(3):631–634

    Article  PubMed  Google Scholar 

  86. Denton MD, Magee CC, Ovuworie C, Mauiyyedi S, Pascual M, Colvin RB et al (2002) Prevalence of renal cell carcinoma in patients with ESRD pre-transplantation: a pathologic analysis. Kidney Int 61(6):2201–2209

    Article  PubMed  Google Scholar 

  87. Wetmore JB, Calvet JP, Yu AS, Lynch CF, Wang CJ, Kasiske BL et al (2014) Polycystic kidney disease and cancer after renal transplantation. J Am Soc Nephrol 25(10):2335–2341

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yu T-M, Chuang Y-W, Yu M-C, Chen C-H, Yang C-K, Huang S-T et al (2016) Risk of cancer in patients with polycystic kidney disease: a propensity-score matched analysis of a nationwide, population-based cohort study. The Lancet Oncology 17(10):1419–1425

    Article  PubMed  Google Scholar 

  89. De Nardo D, De Nardo CM, Latz E (2014) New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. Am J Pathol 184(1):42–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chang A, Ko K, Clark MR (2014) The emerging role of the inflammasome in kidney diseases. Curr Opin Nephrol Hypertens 23(3):204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Takiar V, Nishio S, Seo-Mayer P, King JD Jr, Li H, Zhang L et al (2011) Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci U S A 108(6):2462–2467

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pernicova I, Korbonits M (2014) Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10(3):143–156

    Article  CAS  PubMed  Google Scholar 

  93. Yu TM, Chuang YW, Yu MC, Chen CH, Yang CK, Huang ST et al (2016) Risk of cancer in patients with polycystic kidney disease: a propensity-score matched analysis of a nationwide, population-based cohort study. Lancet Oncol 17(10):1419–1425

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (81700579 and 81670612, to CM), the Three-year Project of Action for Shanghai Public Health System (GWIV-18, to CM), and the National Key Research and Development Program of China (2016YFC0901502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlin Mei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Xu, D. & Mei, C. The association between autosomal dominant polycystic kidney disease and cancer. Int Urol Nephrol 51, 93–100 (2019). https://doi.org/10.1007/s11255-018-1951-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-018-1951-5

Keywords

Navigation