Advertisement

International Urology and Nephrology

, Volume 50, Issue 6, pp 1181–1188 | Cite as

Determination of NF-κB and RANKL levels in peripheral blood osteoclast precursor cells in chronic kidney disease patients

  • Gülcan Güneş
  • Nil Doğruer Ünal
  • Gülçin Eskandari
  • Ahmet Kiykim
  • Özlem Bölgen Çimen
  • Gülhan Temel
  • Mehmet Burak Y. Çimen
Nephrology - Original Paper
  • 89 Downloads

Abstract

Purpose

Chronic kidney disease (CKD) is a progressive condition characterized by irreversible loss of functional nephron mass due to variety of causes; an inevitable complication of CKD is metabolic bone disease, and this pathology is called as renal osteodystrophy (ROD). In this study, we aimed to determine the levels of serum sRANKL and intracellular NF-κB levels in peripheral blood osteoclast precursor cells in patients with stage 3 CKD.

Materials and methods

Forty-one male patients aged 35–60 with CKD identified as stage 3 according to GFR calculated on the basis of creatinine values and 27 healthy male subjects with age ranging from 40 to 60 as control group were included in this study. Levels of biochemical parameters, vitamin D3, parathyroid hormone, bone mineral density, sRANKL and NF-κB were determined by using photometric, electrochemiluminescence, HPLC, ELISA and flow cytometric methods in control and patient groups, respectively.

Results

When stage 3 CKD patients were compared with controls, patients with stage 3 CKD had statistically significantly higher iPTH levels, but they had statistically significantly lower vitamin D3 levels. However, the other biochemical parameters, bone mineral density, sRANKL and NF-κB levels did not reveal any significance.

Conclusion

In conclusion, vitamin D3 and iPTH levels seem to be important parameters for evaluating the early stages of ROD. The lack of statistically significant differences in the levels of sRANKL and NF-κB suggests that these parameters are not sufficient in the evaluation of bone metabolism in the early stages of renal failure.

Keywords

Chronic kidney disease NF-κB Renal osteodystrophy sRANKL 

Notes

Funding

This study was supported by the Scientific Research Projects Unit, Mersin University [BAP-TF (GG) 2009-8 TU].

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

  1. 1.
    D’Onofrio G, Simeoni M, Rizza P, Caroleo M, Capria M, Mazzitello G, Sacco T, Mazzuca E, Panzino MT, Cerantonio A, Segura-Garcia C, Andreucci M, De Fazio P, Fuiano G (2017) Quality of life, clinical outcome, personality and coping in chronic hemodialysis patients. Ren Fail 39(1):45–53.  https://doi.org/10.1080/0886022X.2016.1244077 CrossRefPubMedGoogle Scholar
  2. 2.
    Bargman M, Skorecki K (2008) Chronic Kidney Disease. In: Fauci S, Kasper L, Braunwald E, Hauser K, Longo B, Jameson F (eds) Harrison’s principles of internal medicine, 17th edn. Mv Graw Hill, New York, pp 1761–1771Google Scholar
  3. 3.
    Thomas R, Kanso A, Sedor JR (2008) Chronic kidney disease and its complications. Prim Care 35(2):329–344.  https://doi.org/10.1016/j.pop.2008.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, Matsushita K, Wen CP (2013) Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382(9889):339–352.  https://doi.org/10.1016/s0140-6736(13)60595-4 CrossRefPubMedGoogle Scholar
  5. 5.
    Galea I, Farrugia E (2005) Biochemical indices of renal osteodystrophy in dialysis patients on the island of Malta. Int Urol Nephrol 37(2):335–340.  https://doi.org/10.1007/s11255-004-4653-0 CrossRefPubMedGoogle Scholar
  6. 6.
    Zheng CM, Zheng JQ, Wu CC, Lu CL, Shyu JF, Yung-Ho H, Wu MY, Chiu IJ, Wang YH, Lin YF, Lu KC (2016) Bone loss in chronic kidney disease: quantity or quality? Bone 87:57–70.  https://doi.org/10.1016/j.bone.2016.03.017 CrossRefPubMedGoogle Scholar
  7. 7.
    Komano Y, Nanki T, Hayashida K, Taniguchi K, Miyasaka N (2006) Identification of a human peripheral blood monocyte subset that differentiates into osteoclasts. Arthritis Res Ther 8:R152.  https://doi.org/10.1186/ar2046 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T (1999) Commitment and differentiation of osteoclast precursor cells by the sequential expression of C-Fms and receptor activator of nuclear factor κb (Rank) receptors. J Exp Med 190(12):1741–1754CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pivetta E, Wassermann B, Bulian P, Steffan A, Colombatti A, Polesel J, Spessotto P (2015) Functional osteoclastogenesis: the baseline variability in blood donor precursors is not associated with age and gender. Oncotarget 6(31):31889–31900.  https://doi.org/10.18632/oncotarget.5575 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wright HL, McCarthy HS, Middleton J, Marshall MJ (2009) RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med 2(1):56–64.  https://doi.org/10.1007/s12178-009-9046-7 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146.  https://doi.org/10.1016/j.abb.2008.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Spasovski GB (2004) Bone biopsy as a diagnostic tool in the assessment of renal osteodystrophy. Int J Artif Organs 27(11):918–923CrossRefPubMedGoogle Scholar
  13. 13.
    Diamond T, Elder GJ (2017) Is there a practical role for bone biopsy in chronic kidney disease? Nephrology (Carlton) 22:22–26.  https://doi.org/10.1111/nep.13017 CrossRefGoogle Scholar
  14. 14.
    Klejna K, Naumnik B, Gasowska K, Myśliwiec M (2009) OPG/RANK/RANKL signaling system and its significance in nephrology. Folia Histochem Cytobiol 47:199–206.  https://doi.org/10.2478/v10042-009-0035-x CrossRefPubMedGoogle Scholar
  15. 15.
    Shaarawy M, Fathy SA, Mehany NL, Hindy OW (2007) Circulating levels of osteoprotegerin and receptor activator of NF-kappaB ligand in patients with chronic renal failure. Clin Chem Lab Med 45:498–503.  https://doi.org/10.1515/CCLM.2007.306 CrossRefGoogle Scholar
  16. 16.
    Avbersek-Luznik I, Balon BP, Rus I, Marc J (2005) Increased bone resorption in HD patients: is it caused by elevated RANKL synthesis? Nephrol Dial Transpl 20:566–570.  https://doi.org/10.1093/ndt/gfh672 CrossRefGoogle Scholar
  17. 17.
    Fahrleitner-Pammer A, Dobnig H, Dimai HP, Holzer H, Benesch T, Borchhardt K, Cejka D, Haas M (2009) The effect of RANKL and OPG on bone mineral density in pre-dialysis chronic renal failure. Clin Nephrol 71:652–659CrossRefPubMedGoogle Scholar
  18. 18.
    Albalate M, de la Piedra C, Fernández C, Lefort M, Santana H, Hernando P, Hernández J, Caramelo C (2006) Association between phosphate removal and markers of bone turnover in haemodialysis patients. Nephrol Dial Transpl 21:1626–1632.  https://doi.org/10.1093/ndt/gfl034 CrossRefGoogle Scholar
  19. 19.
    EPI CKD Calculator. http://www.MDRD.com/. Accessed 26 June 2010
  20. 20.
    Schoolwerth AC, Engelgau MM, Rufo KH, Vinicor F, Hostetter TH, Chianchiano D, McClellan WM, Warnock DG (2006) Chronic kidney disease: a public health problem that needs a public health action plan. Prev Chronic Dis 3(2):A57PubMedPubMedCentralGoogle Scholar
  21. 21.
    Ferreira MA (2000) Diagnosis of renal osteodystrophy: when and how to use biochemical markers and non-invasive methods; when bone biopsy is needed. Nephrol Dial Transpl 15(Suppl 5):8–14CrossRefGoogle Scholar
  22. 22.
    Hamdy NA (1995) The need to treat predialysis patients. Nephrol Dial Transpl 10(Suppl 4):19–22.  https://doi.org/10.1093/ndt/10.supp4.19 CrossRefGoogle Scholar
  23. 23.
    Shin SK, Kim DH, Kim HS, Shin KT, Ma KA, Kim SJ, Kwak YS, Ha SK, Sherrard DJ (1999) Renal osteodystrophy in pre-dialysis patients: ethnic difference? Perit Dial Int 19(Suppl 2):402–407Google Scholar
  24. 24.
    Pitt TO, Piraino BH, Mitro R, Chen TC, Segre GV, Greenberg A, Puschett JB (1988) Hyperparathyroidism and 1,25 dihydroksyvitamin D deficiency in mild moderate and severe renal failure. J Clin Endocrinol Metab 67:876–881CrossRefGoogle Scholar
  25. 25.
    Martínez-Castelao A, Górriz JL, Portolés JM, De Alvaro F, Cases A, Luño J, Navarro-González JF, Montes R, De la Cruz-Troca JJ, Natarajan A, Batlle D (2011) Baseline characteristics of patients with chronic kidney disease stage 3 and stage 4 in spain: the MERENA observational cohort study. BMC Nephrol 5(12):53.  https://doi.org/10.1186/1471-2369-12-53 CrossRefGoogle Scholar
  26. 26.
    Jiang JQ, Lin S, Xu PC, Zheng ZF, Jia JY (2011) Serum osteoprotegerin measurement for early diagnosis of chronic kidney disease-mineral and bone disorder. Nephrology (Carlton) 16:588–594.  https://doi.org/10.1111/j.1440-1797.2011.01481.x CrossRefGoogle Scholar
  27. 27.
    Ramos AM, Albalate M, Vázquez S, Caramelo C, Egido J, Ortiz A (2008) Hyperphosphatemia and hyperparathyroidism in incident chronic kidney disease patients. Kidney Int Suppl 111:88–93.  https://doi.org/10.1038/ki.2008.543 CrossRefGoogle Scholar
  28. 28.
    Kurajoh M, Inaba M, Yamada S, Imanishi Y, Tsuchida T, Ishimura E, Nishizawa Y (2008) Association of increased active PTH(1–84) fraction with decreased GFR and serum Ca in predialysis CR patients: modulation by serum 25-OH-D. Osteoporos Int 19(5):709–716.  https://doi.org/10.1007/s00198-007-0554-2 CrossRefPubMedGoogle Scholar
  29. 29.
    Tanaka S, Nakamura K, Takahasi N, Suda T (2005) Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev 208:30–49.  https://doi.org/10.1111/j.0105-2896.2005.00327.x CrossRefPubMedGoogle Scholar
  30. 30.
    Naumnik B, Klejna K, Koc-Żórawska E, Myśliwiec M (2013) Age and gender predict OPG level and OPG/sRANKL ratio in maintenance hemodialysis patients. Adv Med Sci 58(2):382–387CrossRefPubMedGoogle Scholar
  31. 31.
    Doumouchtsis K, Perrea D, Doumouchtsis S, Tziamalis M, Poulakou M, Vlachos I, Kostakis A (2009) Regulatory effect of parathyroid hormone on sRANKL-osteoprotegerin in hemodialysis patients with renal bone disease. Ther Apher Dial 13(1):49–55.  https://doi.org/10.1111/j.1744-9987.2009.00653.x CrossRefPubMedGoogle Scholar
  32. 32.
    Doumouchtsis KK, Kostakis AI, Doumouchtsis SK, Tziamalis MP, Tsigris C, Kostaki MA, Perrea DN (2007) sRANKL/osteoprotegerin complex and biochemical markers in a cohort of male and female hemodialysis patients. J Endocrinol Invest 30(9):762–766.  https://doi.org/10.1007/BF03350814 CrossRefPubMedGoogle Scholar
  33. 33.
    Xu J, Wu HF, Ang ES, Yip K, Woloszyn M, Zheng MH, Tan RX (2009) NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev 20(1):7–17.  https://doi.org/10.1016/j.cytogfr.2008.11.007 CrossRefPubMedGoogle Scholar
  34. 34.
    Boyce BF, Yao Z, Xing L (2010) Functions of nuclear factor kappaB in bone. Ann N Y Acad Sci 1192:367–375.  https://doi.org/10.1111/j.1749-6632.2009.05315.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ward SM (1999) The use of flow cytometry in the diagnosis and monitoring of malignant hematological disorders. Pathology 31(4):382–392CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiochemistryMersin University Medical FacultyMersinTurkey
  2. 2.Department of BiochemistryMersin University Pharmacy FacultyMersinTurkey
  3. 3.Department of Internal Medicine NephrologyMersin University Medical FacultyMersinTurkey
  4. 4.Department of Physical Therapy and RehabilitationMersin University Medical FacultyMersinTurkey
  5. 5.Department of BiostatisticsMersin University Medical FacultyMersinTurkey

Personalised recommendations