International Urology and Nephrology

, Volume 50, Issue 5, pp 799–806 | Cite as

Prevalence, pathophysiological mechanisms and factors affecting urolithiasis

  • Aslam Khan
Urology - Review


The formation of urinary stone, urolithiasis, is one the oldest known disease affecting human throughout different civilizations and times. The exact pathophysiological mechanism of urolithiasis is not yet clear, as these calculi are of various types and too complex for simple understanding. A single theory cannot explain its formation; therefore, different theories are presented in various times for its explanation like free particle, fixed particle, Randall’s plaque theory. In addition, various factors and components are identified that play an important role in the formation of these urinary calculi. In this review, composition of kidney stones, its prevalence/incidence, explanation of pathophysiological mechanisms and role of various factors; urinary pH, uric acid, parathyroid hormone, citrate, oxalate, calcium and macromolecules; osteopontin, matrix Gla protein, kidney injury molecules, urinary prothrombin fragment-1, Tamm–Horsfall protein, inter-α-inhibitors, have been discussed in detail.


Urolithiasis Prevalence Mechanisms 


Compliance with ethical standards

Conflict of interest

The author declares that they have no conflict of interest.


This is not a funded study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Lopez M, Hoppe B (2010) History, epidemiology and regional diversities of urolithiasis. Pediatr Nephrol 25(1):49–59PubMedCrossRefGoogle Scholar
  2. 2.
    Lyu J, Wu R (2014) A brief history of recognition on urolithiasis before medieval period. Zhonghua Yi Shi Za Zhi 44(1):36–39PubMedGoogle Scholar
  3. 3.
    Tefekli A, Cezayirli F (2013) The history of urinary stones: in parallel with civilization. Sci World J 2013:423964Google Scholar
  4. 4.
    Cloutier J et al (2015) Kidney stone analysis: “give me your stone, I will tell you who you are!”. World J Urol 33:157–169PubMedCrossRefGoogle Scholar
  5. 5.
    Lemann J Jr (1993) Composition of the diet and calcium kidney stones. N Engl J Med 328(12):880–882PubMedCrossRefGoogle Scholar
  6. 6.
    Evan AP (2010) Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 25(5):831–841PubMedCrossRefGoogle Scholar
  7. 7.
    Almazroui M et al (2012) Recent climate change in the Arabian Peninsula: seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009. Atmos Res 111:29–45CrossRefGoogle Scholar
  8. 8.
    Lieske JC et al (2006) Diabetes mellitus and the risk of urinary tract stones: a population-based case–control study. Am J Kidney Dis 48:897–904PubMedCrossRefGoogle Scholar
  9. 9.
    Obligado SH, Goldfarb DS (2008) The association of nephrolithiasis with hypertension and obesity: a review. Am J Hypertens 21:257–264PubMedCrossRefGoogle Scholar
  10. 10.
    Rezaee ME et al (2017) Association between multiple chronic conditions and urolithiasis. Int Urol Nephrol 49(8):1361–1367PubMedCrossRefGoogle Scholar
  11. 11.
    Polat EC et al (2015) Relationship between calcium stone disease and metabolic syndrome. Urol J 12:2391–2395PubMedGoogle Scholar
  12. 12.
    Saucier NA et al (2010) Risk factors for CKD in persons with kidney stones: a case–control study in Olmsted County, Minnesota. Am J Kidney Dis 55(1):61–68PubMedCrossRefGoogle Scholar
  13. 13.
    Grover PK, Kim DS, Ryall RL (2002) The effect of seed crystals of hydroxyapatite and brushite on the crystallization of calcium oxalate in undiluted human urine in vitro: implications for urinary stone pathogenesis. Mol Med 8(4):200–209PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kirkali Z et al (2015) Urinary stone disease: progress, status, and needs. Urology 86(4):651–653PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Soucie JM et al (1994) Demographic and geographic variability of kidney stones in the United States. Kidney Int 46(3):893–899PubMedCrossRefGoogle Scholar
  16. 16.
    Brikowski TH, Lotan Y, Pearle MS (2008) Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci USA 105(28):9841–9846PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pak CY (1998) Kidney stones. Lancet 351(9118):1797–1801PubMedCrossRefGoogle Scholar
  18. 18.
    Stamatelou KK et al (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63(5):1817–1823PubMedCrossRefGoogle Scholar
  19. 19.
    Hussain M et al (2009) Management of stone disease: 17 years experience of a stone clinic in a developing country. J Pak Med Assoc 59(12):843–846PubMedGoogle Scholar
  20. 20.
    Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367(9507):333–344PubMedCrossRefGoogle Scholar
  21. 21.
    Resnick M, Pridgen DB, Goodman HO (1968) Genetic predisposition to formation of calcium oxalate renal calculi. N Engl J Med 278(24):1313–1318PubMedCrossRefGoogle Scholar
  22. 22.
    Smith LH (1989) The medical aspects of urolithiasis: an overview. J Urol 141(3 Pt 2):707–710PubMedCrossRefGoogle Scholar
  23. 23.
    Danpure CJ (2000) Genetic disorders and urolithiasis. Urol Clin N Am 27(2):287–299CrossRefGoogle Scholar
  24. 24.
    Curhan GC et al (1997) Family history and risk of kidney stones. J Am Soc Nephrol 8(10):1568–1573PubMedGoogle Scholar
  25. 25.
    Ljunghall S (1979) Family history of renal stones in a population study of stone-formers and health subjects. Br J Urol 51(4):249–252PubMedCrossRefGoogle Scholar
  26. 26.
    Knoll T et al (2011) Urolithiasis through the ages: data on more than 200,000 urinary stone analyses. J Urol 185(4):1304–1311PubMedCrossRefGoogle Scholar
  27. 27.
    Garcia-Raia A, Conte A, Grases F (1991) The origin and causes of struvite stones. Int Urol Nephrol 23(6):537–542PubMedCrossRefGoogle Scholar
  28. 28.
    Schey HM, Corbett WT, Resnick MI (1979) Prevalence rate of renal stone disease in Forsyth County, North Carolina during 1977. J Urol 122(3):288–291PubMedCrossRefGoogle Scholar
  29. 29.
    Graves EJ, Gillum BS (1997) Detailed diagnoses and procedures, National Hospital Discharge Survey, 1995. Vital Health Stat 13(99):1–60Google Scholar
  30. 30.
    Kohri K et al (1991) Epidemiology of urolithiasis in the elderly. Int Urol Nephrol 23(5):413–421PubMedCrossRefGoogle Scholar
  31. 31.
    Naghii MR, Hedayati M (2010) Determinant role of gonadal sex hormones in the pathogenesis of urolithiasis in a male subject—a document for male predominancy (case study). Endocr Regul 44(4):143–146PubMedCrossRefGoogle Scholar
  32. 32.
    Yagisawa T et al (2001) The influence of sex hormones on renal osteopontin expression and urinary constituents in experimental urolithiasis. J Urol 166(3):1078–1082PubMedCrossRefGoogle Scholar
  33. 33.
    Lee YH et al (1992) Determinant role of testosterone in the pathogenesis of urolithiasis in rats. J Urol 147(4):1134–1138PubMedCrossRefGoogle Scholar
  34. 34.
    Aihara K, Byer KJ, Khan SR (2003) Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int 64(4):1283–1291PubMedCrossRefGoogle Scholar
  35. 35.
    Escobar C et al (2008) Apatite induced renal epithelial injury: insight into the pathogenesis of kidney stones. J Urol 180(1):379–387PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Worcester EM, Coe FL (2008) Nephrolithiasis. Prim Care 35(2):369–391PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Baumann JM (1998) Stone prevention: why so little progress? Urol Res 26(2):77–81PubMedCrossRefGoogle Scholar
  38. 38.
    Khan SR (2004) Role of renal epithelial cells in the initiation of calcium oxalate stones. Nephron Exp Nephrol 98(2):e55–e60PubMedCrossRefGoogle Scholar
  39. 39.
    Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482PubMedCrossRefGoogle Scholar
  40. 40.
    Coe FL, Evan A, Worcester E (2005) Kidney stone disease. J Clin Invest 115(10):2598–2608PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Atmani F et al (2003) Prophylaxis of calcium oxalate stones by Herniaria hirsuta on experimentally induced nephrolithiasis in rats. BJU Int 92(1):137–140PubMedCrossRefGoogle Scholar
  42. 42.
    Ryall RL (1997) Urinary inhibitors of calcium oxalate crystallization and their potential role in stone formation. World J Urol 15(3):155–164PubMedCrossRefGoogle Scholar
  43. 43.
    Khan SR, Glenton PA, Byer KJ (2006) Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-l-proline. Kidney Int 70(5):914–923PubMedCrossRefGoogle Scholar
  44. 44.
    Kok DJ (1997) Intratubular crystallization events. World J Urol 15(4):219–228PubMedCrossRefGoogle Scholar
  45. 45.
    Lieske JC, Deganello S (1999) Nucleation, adhesion, and internalization of calcium-containing urinary crystals by renal cells. J Am Soc Nephrol 10(Suppl 14):S422–S429PubMedGoogle Scholar
  46. 46.
    Coe FL et al (2010) Three pathways for human kidney stone formation. Urol Res 38(3):147–160PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Byer K, Khan SR (2005) Citrate provides protection against oxalate and calcium oxalate crystal induced oxidative damage to renal epithelium. J Urol 173(2):640–646PubMedCrossRefGoogle Scholar
  48. 48.
    Santhosh Kumar M, Selvam R (2003) Supplementation of vitamin E and selenium prevents hyperoxaluria in experimental urolithic rats. J Nutr Biochem 14(6):306–313PubMedCrossRefGoogle Scholar
  49. 49.
    Thamilselvan S, Khan SR, Menon M (2003) Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol Res 31(1):3–9PubMedGoogle Scholar
  50. 50.
    Khan SR, Canales BK (2015) A unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis 43(01):109–123PubMedCrossRefGoogle Scholar
  51. 51.
    Li WM et al (2009) Association of body mass index and urine pH in patients with urolithiasis. Urol Res 37(4):193–196PubMedCrossRefGoogle Scholar
  52. 52.
    Iida S (1991) Effects of urinary pH and acid-base balance on the formation of calcium oxalate stone. Nippon Hinyokika Gakkai Zasshi 82(1):33–40PubMedGoogle Scholar
  53. 53.
    Wagner CA, Mohebbi N (2010) Urinary pH and stone formation. J Nephrol 23(Suppl 16):S165–S169PubMedGoogle Scholar
  54. 54.
    Coe FL et al (1980) Uric acid saturation in calcium nephrolithiasis. Kidney Int 17(5):662–668PubMedCrossRefGoogle Scholar
  55. 55.
    Grover PK, Ryall RL, Marshall VR (1990) Effect of urate on calcium oxalate crystallization in human urine: evidence for a promotory role of hyperuricosuria in urolithiasis. Clin Sci (Lond) 79(1):9–15CrossRefGoogle Scholar
  56. 56.
    Coe FL, Bushinsky DA (1984) Pathophysiology of hypercalciuria. Am J Physiol 247(1 Pt 2):F1–F13PubMedGoogle Scholar
  57. 57.
    Parks J, Coe F, Favus M (1980) Hyperparathyroidism in nephrolithiasis. Arch Intern Med 140(11):1479–1481PubMedCrossRefGoogle Scholar
  58. 58.
    Bek-Jensen H et al (1996) Is citrate an inhibitor of calcium oxalate crystal growth in high concentrations of urine? Urol Res 24(2):67–71PubMedCrossRefGoogle Scholar
  59. 59.
    Caudarella R, Vescini F (2009) Urinary citrate and renal stone disease: the preventive role of alkali citrate treatment. Arch Ital Urol Androl 81(3):182–187PubMedGoogle Scholar
  60. 60.
    Minisola S et al (1989) Studies on citrate metabolism in normal subjects and kidney stone patients. Miner Electrolyte Metab 15(5):303–308PubMedGoogle Scholar
  61. 61.
    Goktas C et al (2012) The effect of citrate replacement in hypocitraturic cases on the results of SWL: a preliminary prospective randomized study. Int Urol Nephrol 44(5):1357–1362PubMedCrossRefGoogle Scholar
  62. 62.
    Govaris A et al (2010) The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella Enteritidis in minced sheep meat during refrigerated storage. Int J Food Microbiol 137(2–3):175–180PubMedCrossRefGoogle Scholar
  63. 63.
    Coe FL, Parks JH, Asplin JR (1992) The pathogenesis and treatment of kidney stones. N Engl J Med 327(16):1141–1152PubMedCrossRefGoogle Scholar
  64. 64.
    Coe FL, Parks JH, Moore ES (1979) Familial idiopathic hypercalciuria. N Engl J Med 300(7):337–340PubMedCrossRefGoogle Scholar
  65. 65.
    Mehes K, Szelid Z (1980) Autosomal dominant inheritance of hypercalciuria. Eur J Pediatr 133(3):239–242PubMedCrossRefGoogle Scholar
  66. 66.
    Coe FL et al (1982) Effects of low-calcium diet on urine calcium excretion, parathyroid function and serum 1,25(OH)2D3 levels in patients with idiopathic hypercalciuria and in normal subjects. Am J Med 72(1):25–32PubMedCrossRefGoogle Scholar
  67. 67.
    Price PA, Urist MR, Otawara Y (1983) Matrix Gla protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem Biophys Res Commun 117(3):765–771PubMedCrossRefGoogle Scholar
  68. 68.
    Fraser J, Price P (1988) Lung, heart, and kidney express high levels of mRNA for the vitamin K-dependent matrix Gla protein. Implications for the possible functions of matrix Gla protein and for the tissue distribution of the gamma-carboxylase. J Biol Chem 263(23):11033–11036PubMedGoogle Scholar
  69. 69.
    Murshed M et al (2004) Extracellular matrix mineralization is regulated locally; different roles of two Gla-containing proteins. J Cell Biol 165(5):625–630PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Schurgers LJ, Cranenburg EC, Vermeer C (2008) Matrix Gla-protein: the calcification inhibitor in need of vitamin K. Thromb Haemost 100(4):593–603PubMedGoogle Scholar
  71. 71.
    Luo G et al (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386(6620):78–81PubMedCrossRefGoogle Scholar
  72. 72.
    Proudfoot D, Shanahan C (2006) Molecular mechanisms mediating vascular calcification: role of matrix Gla protein. Nephrology (Carlton) 11(5):455–461CrossRefGoogle Scholar
  73. 73.
    Torres L et al (2009) Coagulation–flocculation process applied to wastewaters generated in hydrocarbon-contaminated soil washing: interactions among coagulant and flocculant concentrations and pH value. J Environ Sci Health A Tox Hazard Subst Environ Eng 44(13):1449–1456PubMedCrossRefGoogle Scholar
  74. 74.
    Cranenburg EC et al (2009) Uncarboxylated matrix Gla protein (ucMGP) is associated with coronary artery calcification in haemodialysis patients. Thromb Haemost 101(2):359–366PubMedGoogle Scholar
  75. 75.
    Cozzolino M (2009) Matrix-Gla protein and vascular calcification: the negative role of oral anticoagulant therapy. Thromb Haemost 101(4):605–606PubMedGoogle Scholar
  76. 76.
    Gao B et al (2010) Matrix Gla protein expression in NRK-52E cells exposed to oxalate and calcium oxalate monohydrate crystals. Urol Int 85(2):237–241PubMedCrossRefGoogle Scholar
  77. 77.
    Khan A, Wang W, Khan SR (2014) Calcium oxalate nephrolithiasis and expression of matrix GLA protein in the kidneys. World J Urol 32(1):123–130PubMedCrossRefGoogle Scholar
  78. 78.
    Yasui T et al (1999) Expression of bone matrix proteins in urolithiasis model rats. Urol Res 27(4):255–261PubMedCrossRefGoogle Scholar
  79. 79.
    Wang L et al (2000) Altered gene expression in kidneys of mice with 2,8-dihydroxyadenine nephrolithiasis. Kidney Int 58(2):528–536PubMedCrossRefGoogle Scholar
  80. 80.
    Gao B et al (2007) A polymorphism of matrix Gla protein gene is associated with kidney stones. J Urol 177(6):2361–2365PubMedCrossRefGoogle Scholar
  81. 81.
    Viuda-Martos M et al (2010) Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Fragr J 25(1):13–19CrossRefGoogle Scholar
  82. 82.
    Zuo J et al (2011) Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-l-proline-induced hyperoxaluria in the male Sprague-Dawley rats. Nephrol Dial Transplant 26(6):1785–1796PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bonventre VSV, Victoria R, Takaharu I, Norma AB, Joseph V (2006) Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 290(2):F517–F529PubMedCrossRefGoogle Scholar
  84. 84.
    Doyle IR, Ryall RL, Marshall VR (1991) Inclusion of proteins into calcium oxalate crystals precipitated from human urine: a highly selective phenomenon. Clin Chem 37(9):1589–1594PubMedGoogle Scholar
  85. 85.
    Grover PK, Ryall RL (1999) Inhibition of calcium oxalate crystal growth and aggregation by prothrombin and its fragments in vitro: relationship between protein structure and inhibitory activity. Eur J Biochem 263(1):50–56PubMedCrossRefGoogle Scholar
  86. 86.
    Boskey AL (1989) Phospholipids and calcification. In: Hukins D (ed) Calcified tissue. CRC Press, Boca Raton, pp 215–243CrossRefGoogle Scholar
  87. 87.
    Webber D, Rodgers AL, Sturrock ED (2002) Synergism between urinary prothrombin fragment 1 and urine: a comparison of inhibitory activities in stone-prone and stone-free population groups. Clin Chem Lab Med 40(9):930–936PubMedCrossRefGoogle Scholar
  88. 88.
    Grover PK, Ryall RL (2002) Effect of prothrombin and its activation fragments on calcium oxalate crystal growth and aggregation in undiluted human urine in vitro: relationship between protein structure and inhibitory activity. Clin Sci (Lond) 102(4):425–434CrossRefGoogle Scholar
  89. 89.
    Webber D et al (2006) Sialylation of urinary prothrombin fragment 1 is implicated as a contributory factor in the risk of calcium oxalate kidney stone formation. FEBS J 273(13):3024–3037PubMedCrossRefGoogle Scholar
  90. 90.
    Webber D, Rodgers AL, Sturrock ED (2007) Glycosylation of prothrombin fragment 1 governs calcium oxalate crystal nucleation and aggregation, but not crystal growth. Urol Res 35(6):277–285PubMedCrossRefGoogle Scholar
  91. 91.
    Tamm I, Horsfall FL Jr (1950) Characterization and separation of an inhibitor of viral hemagglutination present in urine. Proc Soc Exp Biol Med 74(1):106–108PubMedCrossRefGoogle Scholar
  92. 92.
    Hess B (1992) Tamm–Horsfall glycoprotein–inhibitor or promoter of calcium oxalate monohydrate crystallization processes? Urol Res 20(1):83–86PubMedCrossRefGoogle Scholar
  93. 93.
    Hallson PC, Rose GA (1979) Uromucoids and urinary stone formation. Lancet 1(8124):1000–1002PubMedCrossRefGoogle Scholar
  94. 94.
    Rose GA, Sulaiman S (1982) Tamm–Horsfall mucoproteins promote calcium oxalate crystal formation in urine: quantitative studies. J Urol 127(1):177–179PubMedCrossRefGoogle Scholar
  95. 95.
    Tang Y et al (1995) Is nephrocalcin related to the urinary derivative (bikunin) of inter-α-trypsin inhibitor? Br J Urol 76(4):425–430PubMedCrossRefGoogle Scholar
  96. 96.
    Witte J et al (1982) Disturbances of selected plasma proteins in hyperdynamic septic shock. Intensive Care Med 8(5):215–222PubMedCrossRefGoogle Scholar
  97. 97.
    Franck C, Pedersen JZ (1983) Trypsin-inhibitory activities of acid-stable fragments of the inter-alpha-trypsin inhibitor in inflammatory and uraemic conditions. Scand J Clin Lab Invest 43(2):151–155PubMedCrossRefGoogle Scholar
  98. 98.
    Owyang C et al (1982) Pancreatic exocrine function in severe human chronic renal failure. Gut 23(5):357–361PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Thogersen IB, Enghild JJ (1995) Biosynthesis of bikunin proteins in the human carcinoma cell line HepG2 and in primary human hepatocytes. Polypeptide assembly by glycosaminoglycan. J Biol Chem 270(31):18700–18709PubMedCrossRefGoogle Scholar
  100. 100.
    Yoshida E et al (1994) Immunohistochemical demonstration of bikunin, a light chain of inter-alpha-trypsin inhibitor, in human brain tumors. Inflammation 18(6):589–596PubMedCrossRefGoogle Scholar
  101. 101.
    Toki N, Sumi H (1982) Urinary trypsin inhibitor and urokinase activities in renal diseases. Acta Haematol 67(2):109–113PubMedCrossRefGoogle Scholar
  102. 102.
    Iida S et al (1999) Temporal changes in mRNA expression for bikunin in the kidneys of rats during calcium oxalate nephrolithiasis. J Am Soc Nephrol 10(5):986–996PubMedGoogle Scholar
  103. 103.
    Bauer J (1911) Die Biologie des Kolostrums (einschliesslich Fermente). Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie 11(1):104–120CrossRefGoogle Scholar
  104. 104.
    Moriyama MT, Glenton PA, Khan SR (2001) Expression of inter-alpha inhibitor related proteins in kidneys and urine of hyperoxaluric rats. J Urol 165(5):1687–1692PubMedCrossRefGoogle Scholar
  105. 105.
    Atmani F, Khan SR (1999) Role of urinary bikunin in the inhibition of calcium oxalate crystallization. J Am Soc Nephrol 10(Suppl 14):S385–S388PubMedGoogle Scholar
  106. 106.
    Ebisuno S et al (1999) Bikunin prevents adhesion of calcium oxalate crystal to renal tubular cells in human urine. J Am Soc Nephrol 10(Suppl 14):S436–S440PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Basic Sciences Department, College of Science and Health Professions-(COSHP-J)King Saud bin Abdulaziz University for Health SciencesJeddahKingdom of Saudi Arabia

Personalised recommendations