Skip to main content
Log in

Research progress of percutaneous nephrolithotomy

  • Urology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Percutaneous nephrolithotomy (PCNL) is generally accepted as the gold standard treatment for the treatment of large kidney stones (> 2 cm). For nearly 40 years, with the continuous progress of technology and the constant updating of ideas, PCNL has made great progress. In this review, we discuss the current research progress, recent advancement and hot spot of the whole process of PCNL including anesthesia, position, puncture, dilation, lithotripsy approaches, perfusate, tube placement, hospitalization time, drug, treatment of residual stones, prognosis judgment and operation evaluation by summarizing the related research in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fernstrom I, Johansson B (1976) Percutaneous pyelolithotomy: a new extraction technique. Scand J Urol Nephrol 10(3):257–259

    Article  CAS  PubMed  Google Scholar 

  2. Bajwa SJ, Kaur J, Singh A (2014) A comparative evaluation of epidural and general anaesthetic technique for renal surgeries: a randomised prospective study. Indian J Anaesth 58(4):410–415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Nandanwar AS et al (2015) A comparison of efficacy of segmental epidural block versus spinal anaesthesia for percutaneous nephrolithotomy. J Clin Diagn Res 9(8):UC01-4

    PubMed  Google Scholar 

  4. Parikh DA et al (2017) Is segmental epidural anaesthesia an optimal technique for patients undergoing percutaneous nephrolithotomy? Indian J Anaesth 61(4):308–314

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dalela D et al (2004) Renal capsular block: a novel method for performing percutaneous nephrolithotomy under local anesthesia. J Endourol 18(6):544–546

    Article  CAS  PubMed  Google Scholar 

  6. Ecke TH et al (2017) Presentation of a method at the exploration stage according to IDEAL: percutaneous nephrolithotomy (PCNL) under local infiltrative anesthesia is a feasible and effective method—retrospective analysis of 439 patients. Int J Med Sci 14(4):302–309

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li H et al (2013) Percutaneous nephrolithotomy under local infiltration anesthesia: a single-center experience of 2000 Chinese cases. Urology 82(5):1020–1025

    Article  PubMed  Google Scholar 

  8. Pu C et al (2015) The efficacy and safety of percutaneous nephrolithotomy under general versus regional anesthesia: a systematic review and meta-analysis. Urolithiasis 43(5):455–466

    Article  CAS  PubMed  Google Scholar 

  9. Valdivia Uría JG, Lachares Santamaria E (1987) Percutaneous nephrolithectomy: simplified technic (preliminary report). Archivos Espaoles De Urología 3(40):177–180

    Google Scholar 

  10. Wood G et al (2017) Supracostal punctures in supine percutaneous nephrolithotomy are safe. Can J Urol 24(2):8749–8753

    PubMed  Google Scholar 

  11. Al-Dessoukey AA et al (2014) Percutaneous nephrolithotomy in the oblique supine lithotomy position and prone position: a comparative study. J Endourol 28(9):1058–1063

    Article  PubMed  Google Scholar 

  12. Karami H et al (2012) Effects of surgical position on patients’ arterial blood gases during percutaneous nephrolithotomy. Urol J 9(3):553–556

    PubMed  Google Scholar 

  13. Sofer M et al (2017) Upper calyx accessibility through a lower calyx access is not influenced by morphometric and clinical factors in supine percutaneous nephrolithotomy. J Endourol 31(5):452–456

    Article  PubMed  Google Scholar 

  14. Sohail N, Albodour A, Abdelrahman KM (2017) Percutaneous nephrolithotomy in complete supine flank-free position in comparison to prone position: a single-centre experience. Arab J Urol 15(1):42–47

    Article  PubMed  Google Scholar 

  15. Wang Y et al (2013) Prone versus modified supine position in percutaneous nephrolithotomy: a prospective randomized study. Int J Med Sci 10(11):1518–1523

    Article  PubMed  PubMed Central  Google Scholar 

  16. Falahatkar S et al (2017) Comparison of success rate in complete supine versus semi supine percutaneous nephrolithotomy: (The first pilot study in randomized clinical trial). Urol J 14(2):3000–3007

    PubMed  Google Scholar 

  17. Armitage JN et al (2017) Percutaneous nephrolithotomy access by urologist or interventional radiologist: practice and outcomes in the UK. BJU Int 119(6):913–918

    Article  PubMed  Google Scholar 

  18. Karami H et al (2014) Blind versus fluoroscopy-guided percutaneous nephrolithotomy: a randomized clinical trial. Urol J 11(2):1386–1391 (discussion 1391)

    PubMed  Google Scholar 

  19. Basiri A et al (2007) Blind puncture in comparison with fluoroscopic guidance in percutaneous nephrolithotomy: a randomized controlled trial. Urol J 4(2):79–83 (discussion 83-5)

    PubMed  Google Scholar 

  20. Wrixon AD (2008) New ICRP recommendations. J Radiol Prot 28(2):161–168

    Article  CAS  PubMed  Google Scholar 

  21. Ristau BT et al (2015) Tracking of radiation exposure in pediatric stone patients: the time is now. J Pediatr Urol 11(6):339.e1-5

    Article  PubMed  Google Scholar 

  22. Ferrandino MN et al (2009) Radiation exposure in the acute and short-term management of urolithiasis at 2 academic centers. J Urol 181(2):668–672 (discussion 673)

    Article  PubMed  Google Scholar 

  23. Sarica K (2017) Renal access during percutaneous nephrolithotomy: increasing value of ultrasonographic guidance for a safer and successful procedure. BJU Int 119(4):509–510

    Article  PubMed  Google Scholar 

  24. Gamal WM et al (2011) Solo ultrasonography-guided percutanous nephrolithotomy for single stone pelvis. J Endourol 25(4):593–596

    Article  PubMed  Google Scholar 

  25. Falahatkar S et al (2010) Totally ultrasound versus fluoroscopically guided complete supine percutaneous nephrolithotripsy: a first report. J Endourol 24(9):1421–1426

    Article  PubMed  Google Scholar 

  26. Jagtap J et al (2014) Which is the preferred modality of renal access for a trainee urologist: ultrasonography or fluoroscopy? Results of a prospective randomized trial. J Endourol 28(12):1464–1469

    Article  PubMed  Google Scholar 

  27. Basiri A et al (2010) X-ray-free percutaneous nephrolithotomy in supine position with ultrasound guidance. World J Urol 28(2):239–244

    Article  PubMed  Google Scholar 

  28. Chi T et al (2017) Contrast enhanced ultrasound as a radiation-free alternative to fluoroscopic nephrostogram for evaluating ureteral patency. J Urol 198(6):1367–1373

    Article  PubMed  Google Scholar 

  29. Agarwal M et al (2011) Safety and efficacy of ultrasonography as an adjunct to fluoroscopy for renal access in percutaneous nephrolithotomy (PCNL). BJU Int 108(8):1346–1349

    Article  PubMed  Google Scholar 

  30. Lima E et al (2017) Ureteroscopy-assisted percutaneous kidney access made easy: first clinical experience with a novel navigation system using electromagnetic guidance (IDEAL Stage 1). Eur Urol 72(4):610–616

    Article  PubMed  Google Scholar 

  31. Lojanapiwat B, Prasopsuk S (2006) Upper-pole access for percutaneous nephrolithotomy: comparison of supracostal and infracostal approaches. J Endourol 20(7):491–494

    Article  CAS  PubMed  Google Scholar 

  32. Ozgor F et al (2017) Skin to calyx distance is not a predictive factor for miniaturized percutaneous nephrolithotomy outcomes. Int Braz J Urol 43(4):679–685

    Article  PubMed  PubMed Central  Google Scholar 

  33. Aminsharifi A et al (2011) Renal parenchymal damage after percutaneous nephrolithotomy with one-stage tract dilation technique: a randomized clinical trial. J Endourol 25(6):927–931

    Article  PubMed  Google Scholar 

  34. Yang L et al (2016) Clinical comparison of the efficiency and security of balloon dilators versus fascial dilators in percutaneous nephrolithotripsy (PCNL). Pak J Med Sci 32(3):635–640

    PubMed  PubMed Central  Google Scholar 

  35. Desai M, Mishra S (2012) ‘Microperc’ micro percutaneous nephrolithotomy: evidence to practice. Curr Opin Urol 22(2):134–138

    Article  PubMed  Google Scholar 

  36. Desai J, Solanki R (2013) Ultra-mini percutaneous nephrolithotomy (UMP): one more armamentarium. BJU Int 112(7):1046–1049

    PubMed  Google Scholar 

  37. Zhao Z et al (2017) Super-mini PCNL (SMP): material, indications, technique, advantages and results. Arch Esp Urol 70(1):211–216

    PubMed  Google Scholar 

  38. Ruhayel Y et al (2017) Tract sizes in miniaturized percutaneous nephrolithotomy: a systematic review from the european association of urology urolithiasis guidelines panel. Eur Urol 72(2):220–235

    Article  PubMed  Google Scholar 

  39. Cheng F et al (2010) Minimally invasive tract in percutaneous nephrolithotomy for renal stones. J Endourol 24(10):1579–1582

    Article  PubMed  Google Scholar 

  40. Li LY et al (2010) Does a smaller tract in percutaneous nephrolithotomy contribute to less invasiveness? A prospective comparative study. Urology 75(1):56–61

    Article  PubMed  Google Scholar 

  41. Desai MR et al (2011) Single-step percutaneous nephrolithotomy (microperc): the initial clinical report. J Urol 186(1):140–145

    Article  PubMed  Google Scholar 

  42. Cepeda M et al (2017) Retrograde intrarenal surgery and micro-percutaneous nephrolithotomy for renal lithiasis smaller than 2 CM. Actas Urol Esp 41(8):516–521

    Article  CAS  PubMed  Google Scholar 

  43. Nicklas AP et al (2015) The vacuum cleaner effect in minimally invasive percutaneous nephrolitholapaxy. World J Urol 33(11):1847–1853

    Article  PubMed  Google Scholar 

  44. Nagele U et al (2007) A newly designed amplatz sheath decreases intrapelvic irrigation pressure during mini-percutaneous nephrolitholapaxy: an in vitro pressure-measurement and microscopic study. J Endourol 21(9):1113–1116

    Article  PubMed  Google Scholar 

  45. Zhong W et al (2011) Minimally invasive percutaneous nephrolithotomy with multiple mini tracts in a single session in treating staghorn calculi. Urol Res 39(2):117–122

    Article  PubMed  Google Scholar 

  46. Zhou Y et al (2017) Comparison of effect of minimally invasive percutaneous nephrolithotomy on split renal function: single tract versus multiple tracts. J Endourol 31(4):361–365

    Article  PubMed  Google Scholar 

  47. Gorbachinsky I et al (2016) Evaluation of renal function after percutaneous nephrolithotomy—Does the number of percutaneous access tracts matter? J Urol 196(1):131–136

    Article  PubMed  Google Scholar 

  48. Kukreja R et al (2004) Factors affecting blood loss during percutaneous nephrolithotomy: prospective study. J Endourol 18(8):715–722

    Article  PubMed  Google Scholar 

  49. Liang T, Zhao C, Wu G (2017) Multi-tract percutaneous nephrolithotomy combined with EMS lithotripsy for bilateral complex renal stones: our experience. Bmc Urol 1(17):15

    Article  Google Scholar 

  50. Radfar MH, Basiri A, Nouralizadeh A (2017) Comparing the efficacy and safety of ultrasonic versus pneumatic lithotripsy in percutaneous nephrolithotomy: a randomized clinical trial. Eur Urol Focus 1(3):82

    Article  Google Scholar 

  51. Li Y, Zeng F, Yang Z (2013) Comparison of Cyberwand dual probe lithotriptor and Swiss lithoclast master in ultrasonically guided percutaneous nephrolithotomy for renal staghorn calculi. J Cent South Univ 8(38):853

    Google Scholar 

  52. Kronenberg P, Traxer O (2015) Update on lasers in urology 2014: current assessment on holmium: yttrium–aluminum–garnet (Ho:YAG) laser lithotripter settings and laser fibers. World J Urol 4(33):463–469

    Article  Google Scholar 

  53. Rassweiler J, Rassweiler MC, Klein J (2016) New technology in ureteroscopy and percutaneous nephrolithotomy. Curr Opin Urol 1(26):95

    Article  Google Scholar 

  54. Hoffman N, Lukasewycz SJ, Canales B (2004) Percutaneous renal stone extraction: in vitro study of retrieval devices. J Urol 2(172):559

    Article  Google Scholar 

  55. Tekgul ZT et al (2015) A prospective randomized double-blind study on the effects of the temperature of irrigation solutions on thermoregulation and postoperative complications in percutaneous nephrolithotomy. J Anesth 29(2):165–169

    Article  PubMed  Google Scholar 

  56. Hosseini MM et al (2014) Percutaneous nephrolithotomy: Is distilled water as safe as saline for irrigation? Urol J 11(3):1551–1556

    PubMed  Google Scholar 

  57. Aghamir SM et al (2009) Sterile water versus isotonic saline solution as irrigation fluid in percutaneous nephrolithotomy. Urol J 6(4):249–253

    PubMed  Google Scholar 

  58. Wang J et al (2016) The effect of local anesthetic infiltration around nephrostomy tract on postoperative pain control after percutaneous nephrolithotomy: a systematic review and meta-analysis. Urol Int 97(2):125–133

    Article  CAS  PubMed  Google Scholar 

  59. Clayman RV (2005) Pain after percutaneous nephrolithotomy: impact of nephrostomy tube size. J Urol 173(4):1199–1200

    PubMed  Google Scholar 

  60. Hamidi N, Ozturk E (2017) The effect of listening to music during percutaneous nephrostomy tube placement on pain, anxiety, and success rate of procedure: a randomized prospective study. J Endourol 31(5):457–460

    Article  PubMed  Google Scholar 

  61. Maheshwari PN, Andankar MG, Bansal M (2000) Nephrostomy tube after percutaneous nephrolithotomy: Large-bore or pigtail catheter? J Endourol 14(9):735–737 (discussion 737-8)

    Article  CAS  PubMed  Google Scholar 

  62. Nadler RB, Kara C, Resorlu B, Bayindir M, Unsal A (2011) Words of wisdom. Re: a randomized comparison of totally tubeless and standard percutaneous nephrolithotomy in elderly patients. Eur Urol 59(6):1070

    Article  PubMed  Google Scholar 

  63. Song G et al (2015) Advantages of tubeless mini-percutaneous nephrolithotomy in the treatment of preschool children under 3 years old. J Pediatr Surg 50(4):655–658

    Article  PubMed  Google Scholar 

  64. Wang CJ, Chang CH, Huang SW (2011) Simultaneous bilateral tubeless percutaneous nephrolithotomy of staghorn stones: a prospective randomized controlled study. Urol Res 39(4):289–294

    Article  PubMed  Google Scholar 

  65. Etemadian M et al (2012) Outcomes of tubeless percutaneous nephrolithotomy in patients with chronic renal insufficiency. Iran J Kidney Dis 6(3):216–218

    PubMed  Google Scholar 

  66. Aghamir SM et al (2008) Totally tubeless percutaneous nephrolithotomy in renal anomalies. J Endourol 22(9):2131–2134

    Article  PubMed  Google Scholar 

  67. Jun-Ou J, Lojanapiwat B (2010) Supracostal access: Does it affect tubeless percutaneous nephrolithotomy efficacy and safety? Int Braz J Urol 36(2):171–176

    Article  CAS  PubMed  Google Scholar 

  68. Shah HN et al (2005) Tubeless percutaneous nephrolithotomy: a prospective feasibility study and review of previous reports. BJU Int 96(6):879–883

    Article  PubMed  Google Scholar 

  69. Agrawal MS, Agrawal M (2009) Are multiple nephrostomy tubes necessary after multitract percutaneous nephrolithotomy? A randomized comparison of single versus multiple nephrostomy tubes. J Endourol 23(11):1831–1834

    Article  PubMed  Google Scholar 

  70. Jiang H et al (2017) Improving drainage after percutaneous nephrolithotomy based on health-related quality of life: a prospective randomized study. J Endourol 31(11):1131–1138

    Article  PubMed  Google Scholar 

  71. Fahmy A et al (2017) Can percutaneous nephrolithotomy be performed as an outpatient procedure? Arab J Urol 15(1):1–6

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tuzel E, Aktepe OC, Akdogan B (2013) Prospective comparative study of two protocols of antibiotic prophylaxis in percutaneous nephrolithotomy. J Endourol 27(2):172–176

    Article  PubMed  Google Scholar 

  73. Seyrek M et al (2012) Perioperative prophylaxis for percutaneous nephrolithotomy: randomized study concerning the drug and dosage. J Endourol 26(11):1431–1436

    Article  PubMed  Google Scholar 

  74. Sofikerim M, Gulmez I, Karacagil M (2007) One week of ciprofloxacin before percutaneous nephrolithotomy significantly reduces upper tract infection and urosepsis: a prospective controlled study. BJU Int 99(2):466

    Article  PubMed  Google Scholar 

  75. Lojanapiwat B et al (2011) Alkaline citrate reduces stone recurrence and regrowth after shockwave lithotripsy and percutaneous nephrolithotomy. Int Braz J Urol 37(5):611–616

    Article  CAS  PubMed  Google Scholar 

  76. Harraz AM et al (2017) Residual stones after percutaneous nephrolithotomy: comparison of intraoperative assessment and postoperative non-contrast computerized tomography. World J Urol 35(8):1241–1246

    Article  PubMed  Google Scholar 

  77. Desoky EA et al (2017) Immediate versus delayed shockwave lithotripsy for inaccessible stones after uncomplicated percutaneous nephrolithotomy. Arab J Urol 15(1):30–35

    Article  PubMed  Google Scholar 

  78. Wu C et al (2017) Comparison of renal pelvic pressure and postoperative fever incidence between standard- and mini-tract percutaneous nephrolithotomy. Kaohsiung J Med Sci 33(1):36–43

    Article  PubMed  Google Scholar 

  79. Sharma K et al (2016) Factors predicting infectious complications following percutaneous nephrolithotomy. Urol Ann 8(4):434–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fan J et al (2017) Predictors for uroseptic shock in patients who undergo minimally invasive percutaneous nephrolithotomy. Urolithiasis 45(6):573–578

    Article  CAS  PubMed  Google Scholar 

  81. Ramaraju K et al (2016) Predictors of systemic inflammatory response syndrome following percutaneous nephrolithotomy. Urol Ann 8(4):449–453

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ganesan V et al (2017) C-reactive protein and erythrocyte sedimentation rate predict systemic inflammatory response syndrome after percutaneous nephrolithotomy. J Endourol 31(7):638–644

    Article  PubMed  Google Scholar 

  83. Yang T et al (2017) The evaluation of risk factors for postoperative infectious complications after percutaneous nephrolithotomy. Biomed Res Int 2017:4832051

    PubMed  PubMed Central  Google Scholar 

  84. Said SH et al (2017) Percutaneous nephrolithotomy; alarming variables for postoperative bleeding. Arab J Urol 15(1):24–29

    Article  PubMed  PubMed Central  Google Scholar 

  85. El-Nahas AR et al (2017) Acute kidney injury after percutaneous nephrolithotomy for stones in solitary kidneys. Scand J Urol 51(2):165–169

    Article  CAS  PubMed  Google Scholar 

  86. Leavitt DA et al (2016) Can activities of daily living predict complications following percutaneous nephrolithotomy? J Urol 195(6):1805–1809

    Article  PubMed  Google Scholar 

  87. Vicentini FC et al (2017) What is the quickest scoring system to predict percutaneous nephrolithotomy outcomes? A comparative study among S.T.O.N.E score, Guy’s stone score and CROES nomogram. Int Braz J Urol 43(6):1102–1109

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ozgor F et al (2017) Comparison of STONE, CROES and Guy’s nephrolithometry scoring systems for predicting stone-free status and complication rates after percutaneous nephrolithotomy in obese patients. Urolithiasis 2017:1–7

    Google Scholar 

  89. Yanaral F et al (2017) Comparison of CROES, S.T.O.N.E., and Guy’s scoring systems for the prediction of stone-free status and complication rates following percutaneous nephrolithotomy in patients with chronic kidney disease. Int Urol Nephrol 49(9):1569–1575

    Article  PubMed  Google Scholar 

  90. Licheng J et al (2014) Unenhanced low-dose versus standard-dose CT localization in patients with upper urinary calculi for minimally invasive percutaneous nephrolithotomy (MPCNL). Indian J Med Res 139(3):386–392

    PubMed  PubMed Central  Google Scholar 

  91. de la Rosette JJ et al (2012) Categorisation of complications and validation of the Clavien score for percutaneous nephrolithotomy. Eur Urol 62(2):246–255

    Article  PubMed  Google Scholar 

  92. Penniston KL, Nakada SY (2013) Development of an instrument to assess the health related quality of life of kidney stone formers. J Urol 189(3):921–930

    Article  PubMed  Google Scholar 

  93. Penniston KL et al (2017) Validation and reliability of the Wisconsin Stone Quality of Life Questionnaire. J Urol 197(5):1280–1288

    Article  PubMed  Google Scholar 

  94. Zhao PT et al (2016) A randomized controlled comparison of nephrostomy drainage vs ureteral stent following percutaneous nephrolithotomy using the wisconsin stone QOL. J Endourol 30(12):1275–1284

    Article  PubMed  Google Scholar 

  95. Prakash G et al (2017) Outcome of percutaneous nephrolithotomy in anomalous kidney: Is it different? Urol Ann 9(1):23–26

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rana AM, Bhojwani JP (2009) Percutaneous nephrolithotomy in renal anomalies of fusion, ectopia, rotation, hypoplasia, and pelvicalyceal aberration: uniformity in heterogeneity. J Endourol 23(4):609–614

    Article  PubMed  Google Scholar 

  97. Mosavi-Bahar SH et al (2007) Percutaneous nephrolithotomy in patients with kidney malformations. J Endourol 21(5):520–524

    Article  PubMed  Google Scholar 

  98. Wang X et al (2017) Percutaneous nephrolithotomy under ultrasound guidance in patients with renal calculi and autosomal dominant polycystic kidney disease: a report of 11 cases. Adv Urol 2017:3483172

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jones P et al (2017) Percutaneous nephrolithotomy in patients with chronic kidney disease: efficacy and safety. Urology 108:1–6

    Article  PubMed  Google Scholar 

  100. Haberal HB et al (2017) Percutaneous nephrolithotomy in solitary kidneys: 17 years of experience. Urology 109:55–59

    Article  PubMed  Google Scholar 

  101. Hsu CS et al (2017) Emergency percutaneous nephrostomy versus emergency percutaneous nephrolithotomy in patients with sepsis associated with large uretero-pelvic junction stone impaction: a randomized controlled trial. Int Braz J Urol 43(3):481–488

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhong W et al (2013) Percutaneous nephrolithotomy for renal stones following failed extracorporeal shockwave lithotripsy: different performances and morbidities. Urolithiasis 41(2):165–168

    Article  PubMed  Google Scholar 

  103. Ozgor F et al (2016) The effects of previous open renal stone surgery types on PNL outcomes. Can Urol Assoc J 10(7–8):E246–E250

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mousavi-Bahar SH et al (2017) Safety and efficacy of percutaneous nephrolithotomy in patients with severe skeletal deformities. Urol J 14(3):3054–6058

    PubMed  Google Scholar 

  105. Duvdevani M et al (2009) Percutaneous nephrolithotripsy in patients with diabetes mellitus. J Endourol 23(1):21–26

    Article  PubMed  Google Scholar 

  106. Christman MS, Kalmus A, Casale P (2013) Morbidity and efficacy of ureteroscopic stone treatment in patients with neurogenic bladder. J Urol 190(4 Suppl):1479–1483

    Article  PubMed  Google Scholar 

  107. Zhou X et al (2017) Effect of obesity on outcomes of percutaneous nephrolithotomy in renal stone management: a systematic review and meta-analysis. Urol Int 98(4):382–390

    Article  PubMed  Google Scholar 

  108. Aghamir S et al (2017) Totally tubeless percutaneous nephrolithotomy is feasible in morbidly obese patients. Turk J Urol 43(2):162–164

    Article  PubMed  PubMed Central  Google Scholar 

  109. Isoglu CS et al (2017) Effects of body mass index on the outcomes of percutaneous nephrolithotomy. Int Braz J Urol 43(4):698–703

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sofer M et al (2017) Implementation of supine percutaneous nephrolithotomy: a novel position for an old operation. Cent Eur J Urol 70(1):60–65

    Google Scholar 

  111. Okeke Z et al (2012) Prospective comparison of outcomes of percutaneous nephrolithotomy in elderly patients versus younger patients. J Endourol 26(8):996–1001

    Article  PubMed  Google Scholar 

  112. Bhageria A et al (2013) Paediatric percutaneous nephrolithotomy: single-centre 10-year experience. J Pediatr Urol 9(4):472–475

    Article  PubMed  Google Scholar 

  113. Kandemir A et al (2017) A prospective randomized comparison of micropercutaneous nephrolithotomy (Microperc) and retrograde intrarenal surgery (RIRS) for the management of lower pole kidney stones. World J Urol 35(11):1771–1776

    Article  PubMed  Google Scholar 

  114. Selmi V et al (2017) Comparison of retrograde intrarenal surgery and percutaneous nephrolithotomy methods in treatment of upper calyceal stones of 10–20 mm. J Laparoendosc Adv Surg Tech A 27(12):1293–1298

    Article  PubMed  Google Scholar 

  115. Fayad AS, Elsheikh MG, Ghoneima W (2017) Tubeless mini-percutaneous nephrolithotomy versus retrograde intrarenal surgery for lower calyceal stones of 2 cm: a prospective randomised controlled study. Arab J Urol 15(1):36–41

    Article  PubMed  Google Scholar 

  116. Traxer O, Thomas A (2013) Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol 189(2):580–584

    Article  PubMed  Google Scholar 

  117. Guzelburc V et al (2016) Comparison of absorbed irrigation fluid volumes during retrograde intrarenal surgery and percutaneous nephrolithotomy for the treatment of kidney stones larger than 2 cm. Springerplus 5(1):1707

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wang Q et al (2017) Rigid ureteroscopic lithotripsy versus percutaneous nephrolithotomy for large proximal ureteral stones: a meta-analysis. PLoS ONE 12(2):e0171478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Atis G et al (2017) Comparison of percutaneous nephrolithotomy and retrograde intrarenal surgery in treating 20–40 mm renal stones. Urol J 14(2):2995–2999

    PubMed  Google Scholar 

  120. Bryniarski P et al (2012) A randomized controlled study to analyze the safety and efficacy of percutaneous nephrolithotripsy and retrograde intrarenal surgery in the management of renal stones more than 2 cm in diameter. J Endourol 26(1):52–57

    Article  PubMed  Google Scholar 

  121. Saad KS et al (2015) Percutaneous nephrolithotomy vs retrograde intrarenal surgery for large renal stones in pediatric patients: a randomized controlled trial. J Urol 194(6):1716–1720

    Article  PubMed  Google Scholar 

  122. Karakoyunlu N et al (2015) A comparison of standard PCNL and staged retrograde FURS in pelvis stones over 2 cm in diameter: a prospective randomized study. Urolithiasis 43(3):283–287

    Article  PubMed  Google Scholar 

  123. Wu T et al (2017) Ureteroscopic lithotripsy versus laparoscopic ureterolithotomy or percutaneous nephrolithotomy in the management of large proximal ureteral stones: a systematic review and meta-analysis. Urol Int 99(3):308–319

    Article  PubMed  Google Scholar 

  124. Jiang H et al (2017) Minimally invasive percutaneous nephrolithotomy versus retrograde intrarenal surgery for upper urinary stones: a systematic review and meta-analysis. Biomed Res Int 2017:2035851

    PubMed  PubMed Central  Google Scholar 

  125. Chan LH et al (2017) Primary SWL is an efficient and cost-effective treatment for lower pole renal stones between 10 and 20 mm in size: a large single center study. J Endourol 31(5):510–516

    Article  PubMed  Google Scholar 

  126. Wiesenthal JD et al (2011) A comparison of treatment modalities for renal calculi between 100 and 300 mm2: Are shockwave lithotripsy, ureteroscopy, and percutaneous nephrolithotomy equivalent? J Endourol 25(3):481–485

    Article  PubMed  Google Scholar 

  127. Donaldson JF et al (2015) Systematic review and meta-analysis of the clinical effectiveness of shock wave lithotripsy, retrograde intrarenal surgery, and percutaneous nephrolithotomy for lower-pole renal stones. Eur Urol 67(4):612–616

    Article  PubMed  Google Scholar 

  128. Basiri A et al (2014) Comparison of safety and efficacy of laparoscopic pyelolithotomy versus percutaneous nephrolithotomy in patients with renal pelvic stones: a randomized clinical trial. Urol J 11(6):1932–1937

    PubMed  Google Scholar 

  129. Li S et al (2014) Randomized controlled trial comparing retroperitoneal laparoscopic pyelolithotomy versus percutaneous nephrolithotomy for the treatment of large renal pelvic calculi: a pilot study. J Endourol 28(8):946–950

    Article  PubMed  Google Scholar 

  130. Aminsharifi A, Hosseini MM, Khakbaz A (2013) Laparoscopic pyelolithotomy versus percutaneous nephrolithotomy for a solitary renal pelvis stone larger than 3 cm: a prospective cohort study. Urolithiasis 41(6):493–497

    Article  PubMed  Google Scholar 

  131. Al-Hunayan A et al (2011) Management of solitary renal pelvic stone: laparoscopic retroperitoneal pyelolithotomy versus percutaneous nephrolithotomy. J Endourol 25(6):975–978

    Article  PubMed  Google Scholar 

  132. Aghamir SM et al (2008) Comparison of systemic stress responses between percutaneous nephrolithotomy (PCNL) and open nephrolithotomy. J Endourol 22(11):2495–2500

    Article  PubMed  Google Scholar 

  133. Al-Kohlany KM et al (2005) Treatment of complete staghorn stones: a prospective randomized comparison of open surgery versus percutaneous nephrolithotomy. J Urol 173(2):469–473

    Article  PubMed  Google Scholar 

  134. He XZ et al (2017) Analysis of the safety and efficacy of combined extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy for the treatment of complex renal calculus. Eur Rev Med Pharmacol Sci 21(11):2567–2571

    PubMed  Google Scholar 

  135. Zhong W et al (2015) Percutaneous-based management of Staghorn calculi in solitary kidney: combined mini percutaneous nephrolithotomy versus retrograde intrarenal surgery. Urol Int 94(1):70–73

    Article  PubMed  Google Scholar 

  136. Scoffone CM et al (2008) Endoscopic combined intrarenal surgery in Galdakao-modified supine Valdivia position: A new standard for percutaneous nephrolithotomy? Eur Urol 54(6):1393–1403

    Article  PubMed  Google Scholar 

  137. Huang TY, Feng KM, Lo IS (2017) Percutaneous nephrolithotomy: update, trends, and future directions for simultaneous supine percutaneous nephrolithotomy and retrograde ureterolithotripsy in the Galdakao-modified supine valdivia position for large proximal ureteral calculi. Eur Urol 71(5):837–838

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaogang Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11255_2018_1847_MOESM1_ESM.bmp

Supplementary figure 1 Puncture of PCNL under guidance of ultrasonography. A. Image of kidney under ultrasonography when a puncture needle inside. The white arrow points to the needle. B. Image of kidney under ultrasonography when a guidewire is inserted. The white arrow points to the guidewire. (BMP 2167 kb)

11255_2018_1847_MOESM2_ESM.bmp

Supplementary figure 2 Holmium laser lithotripsy. The white arrow points to the holmium laser optical fiber. (BMP 1388 kb)

11255_2018_1847_MOESM3_ESM.bmp

Supplementary figure 3 PCNL with nephrostomy tube and ureteral catheter. The white arrow points to the nephrostomy tube, and the black arrow points to the ureteral catheter. (BMP 3594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Zhang, Y., Pokhrel, G. et al. Research progress of percutaneous nephrolithotomy. Int Urol Nephrol 50, 807–817 (2018). https://doi.org/10.1007/s11255-018-1847-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-018-1847-4

Keywords

Navigation