International Urology and Nephrology

, Volume 50, Issue 4, pp 705–713 | Cite as

Novel acute kidney injury biomarkers: their characteristics, utility and concerns

  • Braian M. Beker
  • Mateo G. Corleto
  • Cecilia Fieiras
  • Carlos G. Musso
Nephrology - Review
  • 426 Downloads

Abstract

Acute kidney injury (AKI) consists of a rapid renal function decline which usually increases serum urea and creatinine levels. Since kidney injury begins by inducing biological and molecular changes which evolve to cellular damage, biomarkers could be used as tools for monitoring early AKI appearance, and predicting its recovery. Among the main AKI biomarkers the neutrophil gelatinase-associated lipocalin, cystatin C, kidney injury molecule-1, monocyte chemotactic peptide-1, N-acetyl-β-D-glucosaminidase, interleukin-18, liver-type fatty acid-binding protein, netrin-1, cycle arrest markers, endogenous ouabain, selenium-binding protein 1, and BPIFA2 marker, have been described. Even though novel biomarkers seem to be more helpful to early detect AKI and/or predict the need for renal replacement, and mortality compared to serum creatinine, more comprehensive studies are still required to determine their clinical utility.

Keywords

Acute kidney injury Biomarkers Diagnosis 

Notes

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.

References

  1. 1.
    Herget-Rosenthal S, Metzger J, Albalat A, Bitsika V, Mischak H (2012) Proteomic biomarkers for the early detection of acute kidney injury. Prilozi 33(1):27–48PubMedGoogle Scholar
  2. 2.
    Aydoğdu M, Gürsel G, Sancak B, Yeni S, Sarı G, Taşyürek S, Türk M, Yüksel S, Senes M, Ozis TN (2013) The use of plasma and urine neutrophil gelatinase associated lipocalin (NGAL) and Cystatin C in early diagnosis of septic acute kidney injury in critically ill patients. Dis Markers 34(4):237–246CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Omerika L, Rasić S, Serdarević N (2014) Importance of determination of urine neutrophile gelatinase associated lipocalin in early detection of acute kidney injury. Coll Antropol 38(1):161–166PubMedGoogle Scholar
  4. 4.
    Ghonemy TA, Amro GM (2014) Plasma neutrophil gelatinase-associated lipocalin (NGAL) and plasma cystatin C (CysC) as biomarker of acute kidney injury after cardiac surgery. Saudi J Kidney Dis Transplant 25(3):582–588CrossRefGoogle Scholar
  5. 5.
    Mason J, Takabatake T, Olbricht C, Thurau K (1978) The early phase of experimental acute renal failure. Pflugers Arch 373(1):69–76CrossRefPubMedGoogle Scholar
  6. 6.
    Slocum JL, Heung M, Pennathur S (2012) Marking renal injury: can we move beyond serum creatinine? Transl Res 159(4):277–289CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Matsa R, Ashley E, Sharma V, Walden AP, Keating L (2014) Plasma and urine neutrophil gelatinase-associated lipocalin in the diagnosis of new onset acute kidney injury in critically ill patients. Crit Care 18(4):R137CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Moon SJ, Park HB, Yoon SY, Lee SC (2013) Urinary biomarkers for early detection of recovery in patients with acute kidney injury. J Korean Med Sci 28(8):1181–1186CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Devarajan P, Murray P (2014) Biomarkers in acute kidney injury: are we ready for prime time? Nephron Clin Pract 127(1–4):176–179CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ortuño-Andériz F, Cabello-Clotet N, Vidart-Simón N, Postigo-Hernández C, Domingo-Marín S, Sánchez-García S (2015) Cistatina C como marcador precoz de lesión renal aguda en el shock séptico. Rev Clin Española 215(2):83–90CrossRefGoogle Scholar
  11. 11.
    Ferguson MA, Waikar SS (2012) Established and emerging markers of kidney function. Clin Chem 58(4):680–689CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wasung ME, Chawla LS, Madero M (2015) Biomarkers of renal function, which and when? Clin Chim Acta 1:350–438CrossRefGoogle Scholar
  13. 13.
    Ghatanatti R, Teli A, Tirkey SS, Bhattacharya S, Sengupta G, Mondal A (2014) Role of renal biomarkers as predictors of acute kidney injury in cardiac surgery. Asian Cardiovasc Thorac Ann 22(2):234–241CrossRefPubMedGoogle Scholar
  14. 14.
    Haase M, Mertens PR (2015) Biomarkers: more than just markers! Nephrol Dial Transplant 30(1):33–38CrossRefPubMedGoogle Scholar
  15. 15.
    Redahan L, Murray PT (2017) Biomarkers of drug-induced kidney injury. Curr Opin Crit Care 23(6):463–469.  https://doi.org/10.1097/MCC.0000000000000464 CrossRefPubMedGoogle Scholar
  16. 16.
    Vanmassenhove J, Vanholder R, Nagler E, Van Biesen W (2013) Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transplant 28:254–273CrossRefPubMedGoogle Scholar
  17. 17.
    Obermüller N, Geiger H, Weipert C, Urbschat A, Obermüller N, Geiger H, Weipert C, Urbschat A (2014) Current developments in early diagnosis of acute kidney injury. Int Urol Nephrol 46(1):1–7CrossRefPubMedGoogle Scholar
  18. 18.
    Holzscheiter L, Beck C, Rutz S, Manuilova E, Domke I, Guder WG, Hofmann W (2014) NGAL, L-FABP, and KIM-1 in comparison to established markers of renal dysfunction. Clin Chem Lab Med 52(4):537–546CrossRefPubMedGoogle Scholar
  19. 19.
    Kokkoris S, Pipili C, Grapsa E, Kyprianou T, Nanas S (2013) Novel biomarkers of acute kidney injury in the general adult ICU: a review. Ren Fail 35(4):579–591CrossRefPubMedGoogle Scholar
  20. 20.
    Gonzalez F, Vincent F (2012) Biomarkers for acute kidney injury in critically ill patients. Miner Anestesiol 78(12):1394–1403Google Scholar
  21. 21.
    Briguori C, Quintavalle C, Donnarumma E, Condorelli G (2014) Novel biomarkers for contrast-induced acute kidney injury. Biomed Res Int 2014:568738CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Singer E, Markó L, Paragas N, Barasch J, Dragun D, Müller DN, Budde K, Schmidt-Ott KM (2013) Neutrophil gelatinase-associated lipocalin: pathophysiology and clinical applications. Acta Physiol (Oxf) 207(4):663–672CrossRefGoogle Scholar
  23. 23.
    Royakkers AA, Bouman CS, Stassen PM, Korevaar JC, Binnekade JM, van de Hoek W, Kuiper MA, Spronk PE, Schultz MJ (2012) Systemic and urinary neutrophil gelatinase-associated lipocalins are poor predictors of acute kidney injury in unselected critically ill patients. Crit Care Res Pract 2012:712695PubMedPubMedCentralGoogle Scholar
  24. 24.
    de Geus HR, Betjes MG, Bakker J (2012) Biomarkers for the prediction of acute kidney injury: a narrative review on current status and future challenges. Clin Kidney J 2:102–108CrossRefGoogle Scholar
  25. 25.
    Yang HT, Yim H, Cho YS, Kym D, Hur J, Kim JH, Chun W, Kim HS (2014) Assessment of biochemical markers in the early post-burn period for predicting acute kidney injury and mortality in patients with major burn injury: comparison of serum creatinine, serum cystatin-C, plasma and urine neutrophil gelatinase-associated lipocalin. Crit Care 18(4):R151CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Matys U, Bachorzewska-Gajewska H, Malyszko J, Dobrzycki S (2013) Assessment of kidney function in diabetic patients. Is there a role for new biomarkers NGAL, cystatin C and KIM-1? Adv Med Sci 58(2):353–361CrossRefPubMedGoogle Scholar
  27. 27.
    Moledina DG, Hall IE, Thiessen-Philbrook H, Reese PP, Weng FL, Schröppel B, Doshi MD, Wilson FP, Coca SG, Parikh CR (2017) Performance of serum creatinine and kidney injury biomarkers for diagnosing acute tubular injury. Am J Kidney Dis.  https://doi.org/10.1053/j.ajkd.2017.06.031 PubMedGoogle Scholar
  28. 28.
    Bunel V, Tournay Y, Baudoux T, De Prez E, Marchand M, Mekinda Z, Maréchal R, Roumeguère T, Antoine MH, Nortier JL (2017) Early detection of acute cisplatin nephrotoxicity: interest of urinary monitoring of proximal tubular biomarkers. Clin Kidney J. 10(5):639–647.  https://doi.org/10.1093/ckj/sfx007 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pickering JW, Endre ZH (2014) Challenges facing early detection of acute kidney injury in the critically ill. World J Crit Care Med 1(3):61–66CrossRefGoogle Scholar
  30. 30.
    Carrick E, Vanmassenhove J, Glorieux G, Metzger J, Dakna M, Pejchinovski M, Jankowski V, Mansoorian B, Husi H, Mullen W, Mischak H, Vanholder R, Van Biesen W (2016) Development of a MALDI MS-based platform for early detection of acute kidney injury. Proteom Clin Appl 10(7):732–742CrossRefGoogle Scholar
  31. 31.
    Fouad M, Boraie M (2013) Cystatin C as an early marker of acute kidney injury and predictor of mortality in the intensive care unit after acute myocardial infarction. Arab J Nephrol Transplant 6(1):21–26PubMedGoogle Scholar
  32. 32.
    Leem AY, Park MS, Park BH, Jung WJ, Chung KS, Kim SY, Kim EY, Jung JY, Kang YA, Kim YS, Kim SK, Chang J, Song JH (2017) Value of serum cystatin c measurement in the diagnosis of sepsis-induced kidney injury and prediction of renal function recovery. Yonsei Med J 58(3):604–612.  https://doi.org/10.3349/ymj.2017.58.3.604 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ostermann M, Philips BJ, Forni LG (2012) Clinical review: biomarkers of acute kidney injury: where are we now? Crit Care 16(5):233CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Moledina DG, Isguven S, McArthur E, Thiessen-Philbrook H, Garg AX, Shlipak M, Whitlock R, Kavsak PA, Coca SG, Parikh CR (2017) Translational Research Investigating Biomarker Endpoints in Acute Kidney Injury (TRIBE-AKI) Consortium. Plasma monocyte chemotactic protein-1 is associated with acute kidney injury and death after cardiac operations. Ann Thorac Surg 104(2):613–620.  https://doi.org/10.1016/j.athoracsur.2016.11.036 CrossRefPubMedGoogle Scholar
  35. 35.
    Hishikari K, Hikita H, Nakamura S, Nakagama S, Mizusawa M, Yamamoto T, Doi J, Hayashi Y, Utsugi Y, Araki M, Sudo Y, Kimura S, Takahashi A, Ashikaga T, Isobe M (2017) Urinary liver-type fatty acid-binding protein level as a predictive biomarker of acute kidney injury in patients with acute decompensated heart failure. Cardiorenal Med 7:267–275CrossRefPubMedGoogle Scholar
  36. 36.
    Cuartero M, Ballús J, Sabater J, Pérez X, Nin N, Ordonez-Llanos J, Betbesé AJ (2017) Cell-cycle arrest biomarkers in urine to predict acute kidney injury in septic and non-septic critically ill patients. Ann Intensive Care 7(1):92.  https://doi.org/10.1186/s13613-017-0317-y CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Aregger F, Uehlinger DE, Witowski J, Brunisholz RA, Hunziker P, Frey FJ, Jörres A (2014) Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury. Kidney Int 85(4):909–919.  https://doi.org/10.1038/ki.2013.363 CrossRefPubMedGoogle Scholar
  38. 38.
    Mayer T, Bolliger D, Scholz M, Reuthebuch O, Gregor M, Meier P, Grapow M, Seeberger MD, Fassl J (2017) Urine biomarkers of tubular renal cell damage for the prediction of acute kidney injury after cardiac surgery-a pilot study. J Cardiothorac Vasc Anesthesia.  https://doi.org/10.1053/j.jvca.2017.04.024 Google Scholar
  39. 39.
    Liu C, Lu X, Mao Z, Kang H, Liu H, Pan L, Hu J, Wang L, Zhou F (2017) The diagnostic accuracy of urinary [TIMP-2]·[IGFBP7] for acute kidney injury in adults: A PRISMA-compliant meta-analysis. Medicine 96(27):e7484.  https://doi.org/10.1097/MD.0000000000007484 (Baltimore) CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Koyner JL, Shaw AD, Chawla LS, Hoste EA, Bihorac A, Kashani K, Haase M, Shi J, Kellum JA (2015) Sapphire Investigators. Tissue Inhibitor Metalloproteinase-2 (TIMP-2)·IGF-Binding Protein-7 (IGFBP7) Levels Are Associated with Adverse Long-Term Outcomes in Patients with AKI (2015). J Am Soc Nephrol 26(7):1747–1754.  https://doi.org/10.1681/asn.2014060556 CrossRefPubMedGoogle Scholar
  41. 41.
    Pozzoli S, Simonini M, Manunta P (2017) Predicting acute kidney injury: current status and future challenges. J Nephrol.  https://doi.org/10.1007/s40620-017-0416-8 PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kim KS, Yang HY, Song H, Kang YR, Kwon J, An J, Son JY, Kwack SJ, Kim YM, Bae ON, Ahn MY, Lee J, Yoon S, Lee BM, Kim HS (2017) Identification of a sensitive urinary biomarker, selenium-binding protein 1, for early detection of acute kidney injury. J Toxicol Environ Health A 80(9):453–464.  https://doi.org/10.1080/15287394.2017.1299655 CrossRefPubMedGoogle Scholar
  43. 43.
    Kota SK, Pernicone E, Leaf DE, Stillman IE, Waikar SS, Kota SB (2017) BPI fold-containing family a member 2/parotid secretory protein is an early biomarker of AKI. J Am Soc Nephrol.  https://doi.org/10.1681/asn.2016121265 PubMedGoogle Scholar
  44. 44.
    Elmedany SM, Naga SS, Elsharkawy R, Mahrous RS, Elnaggar AI (2017) Novel urinary biomarkers and the early detection of acute kidney injury after open cardiac surgeries. J Crit Care 40:171–177.  https://doi.org/10.1016/j.jcrc.2017.03.029 CrossRefPubMedGoogle Scholar
  45. 45.
    Ronco C, Ricci Z (2013) The concept of risk and the value of novel markers of acute kidney injury. Crit Care 17(1):117CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Siew ED, Ware LB, Bian A, Shintani A, Eden SK, Wickersham N, Cripps B, Ikizler TA (2013) Distinct injury markers for the early detection and prognosis of incident acute kidney injury in critically ill adults with preserved kidney function. Kidney Int 84(4):786–794CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Greenberg JH, Parikh CR (2017) Biomarkers for diagnosis and prognosis of AKI in children: one size does not fit all. Clin J Am Soc Nephrol 12(9):1551–1557.  https://doi.org/10.2215/cjn.12851216 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Human Physiology DepartmentInstituto Universitario del Hospital Italiano de Buenos AiresBuenos AiresArgentina

Personalised recommendations