Skip to main content

Advertisement

Log in

Crosstalk between TLR4 and Notch1 signaling in the IgA nephropathy during inflammatory response

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

IgA nephropathy (IgAN) is an immune complex-mediated disease involved in the kidney disease. Recent studies have revealed that Notch signaling-related genes are aberrantly expressed in various cell types and maybe associate with inflammation-induced carcinogenesis. The aim of our study was to investigate the function of Notch1 in the inflammatory response of IgAN.

Methods

The expression of Notch1, Jagged1 and NICD1 in 52 IgAN renal tissues and 20 control renal tissues was first determined using quantitative real-time PCR and Western blot. ELISA was then used to estimate the inflammatory response of human podocytes to LPS. NF-κB activity was measured using dual-luciferase reporter assay. Activation of Notch1 and NF-κB signaling pathway was assessed using Western blot.

Results

The expression of Notch1, NICD1 and Jagged1 was significantly higher in IgAN renal tissues than control renal tissues (P < 0.05). LPS treatment resulted in an obvious increase of MCP-1, IL-8 and phosphorylated NF-κB p65 in podocytes polymeric IgA (pIgA) IgAN group compared to control group (P < 0.05 for all). Activated Notch1 and its target genes, Hes1 and Hey1 were also enhanced upon LPS stimulation. Silencing of Notch1 signaling with inhibitor DAPT, NF-κB activation and LPS-induced inflammatory response were obviously attenuated, whereas Notch1 activator Jagged1 could markedly restore NF-κB activity and LPS-induced inflammatory response (P < 0.05 for all).

Conclusions

Crosstalk between TLR4 and Notch1 signaling regulates the inflammatory response in the IgAN and maybe plays an important role in the progression of IgAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wyatt RJ, Julian BA (2013) IgA nephropathy. N Engl J Med 368:2402–2414

    Article  CAS  PubMed  Google Scholar 

  2. Coppo R, Amore A, Peruzzi L, Vergano L, Camilla R (2010) Innate immunity and IgA nephropathy. J Nephrol 23:626–632

    PubMed  Google Scholar 

  3. Kaisho T, Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117:979–987

    Article  CAS  PubMed  Google Scholar 

  4. Medzhitov R, Janeway C Jr (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97

    Article  CAS  PubMed  Google Scholar 

  5. Means TK, Golenbock DT, Fenton MJ (2000) The biology of Toll-like receptors. Cytokine Growth Factor Rev 11:219–232

    Article  CAS  PubMed  Google Scholar 

  6. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K et al (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  CAS  PubMed  Google Scholar 

  8. Coppo R, Camilla R, Amore A, Peruzzi L, Daprà V, Loiacono E et al (2010) Toll-like receptor 4 expression is increased in circulating mononuclear cells of patients with immunoglobulin A nephropathy. Clin Exp Immunol 159:73–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suzuki H, Suzuki Y, Narita I, Aizawa M, Kihara M, Yamanaka T et al (2008) Toll-like receptor 9 affects severity of IgA nephropathy. J Am Soc Nephrol 19:2384–2395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Machida H, Ito S, Hirose T, Takeshita F, Oshiro H, Nakamura T et al (2010) Expression of Toll-like receptor 9 in renal podocytes in childhood-onset active and inactive lupus nephritis. Nephrol Dial Transpl 25:2530–2537

    Article  Google Scholar 

  11. Saurus P, Kuusela S, Lehtonen E, Hyvönen ME, Ristola M, Fogarty CL et al (2015) Podocyte apoptosis is prevented by blocking the Toll-like receptor pathway. Cell Death Dis 6:e1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ilagan MX, SnapShot KR (2007) Notch signaling pathway. Cell 128:1246

    Article  PubMed  Google Scholar 

  13. Kopan R, Cagan R (1997) Notch on the cutting edge. Trends Genet 13:465–467

    Article  CAS  PubMed  Google Scholar 

  14. Bajaj J, Maliekal TT, Vivien E, Pattabiraman C, Srivastava S, Krishnamurthy H et al (2011) Notch signaling in CD66 + cells drives the progression of human cervical cancers. Cancer Res 71:4888–4897

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Tan J, Zhang Y, Han N, Di X, Xiao T et al (2014) DLK1 promotes lung cancer cell invasion through upregulation of MMP9 expression depending on Notch signaling. PLoS ONE 9:e91509

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66:1517–1525

    Article  CAS  PubMed  Google Scholar 

  17. Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW, Lai FM et al (2005) Activation of tubular epithelial cells by mesangial-derived TNF-α: glomerulo-tubular communication in IgA nephropathy. Kidney Int 67:602–612

    Article  PubMed  Google Scholar 

  18. Lai KN (2012) Pathogenesis of IgA nephropathy. Nat Rev Nephrol 8:275–283

    Article  CAS  PubMed  Google Scholar 

  19. Roberts IS (2014) Pathology of IgA nephropathy. Nat Rev Nephrol 10:445–454

    Article  CAS  PubMed  Google Scholar 

  20. Robert T, Berthelot L, Cambier A, Rondeau E, Monteiro RC (2015) Molecular insights into the pathogenesis of IgA nephropathy. Trends Mol Med 21:762–775

    Article  CAS  PubMed  Google Scholar 

  21. Duque N, Gómez-Guerrero C, Egido J (1997) Interaction of IgA with Fc alpha receptors of human mesangial cells activates transcription factor nuclear factor-kappa B and induces expression and synthesis of monocyte chemoattractant protein-1, IL-8, and IFN-inducible protein 10. J Immunol 159:3474–3482

    CAS  PubMed  Google Scholar 

  22. Waters AM, Wu MY, Onay T, Scutaru J, Liu J, Lobe CG et al (2008) Ectopic notch activation in developing podocytes causes glomerulosclerosis. J Am Soc Nephrol 19:1139–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murea M, Park JK, Sharma S, Kato H, Gruenwald A, Niranjan T et al (2010) Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function. Kidney Int 78:514–522

    Article  CAS  PubMed  Google Scholar 

  24. Kavanagh D, McKay GJ, Patterson CC, McKnight AJ, Maxwell AP, Savage DA (2011) Warren 3/UK GoKinD Study Group. association analysis of Notch pathway signalling genes in diabetic nephropathy. Diabetologia 54:334–338

    Article  CAS  PubMed  Google Scholar 

  25. Sweetwyne MT, Gruenwald A, Niranjan T, Nishinakamura R, Strobl LJ, Susztak K (2015) Notch1 and Notch2 in podocytes play differential roles during diabetic nephropathy development. Diabetes 64:4099–4111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ueno T, Kobayashi N, Nakayama M, Takashima Y, Ohse T, Pastan I et al (2013) Aberrant Notch1-dependent effects on glomerular parietal epithelial cells promotes collapsing focal segmental glomerulosclerosis with progressive podocyte loss. Kidney Int 83:1065–1075

    Article  CAS  PubMed  Google Scholar 

  27. Zeng Q, Jin C, Ao L, Cleveland JC Jr, Song R, Xu D et al (2012) Cross-talk between the Toll-like receptor 4 and Notch1 pathways augments the inflammatory response in the interstitial cells of stenotic human aortic valves. Circulation 126:222–230

    Article  Google Scholar 

  28. Zeng Q, Song R, Ao L, Weyant MJ, Lee J, Xu D et al (2013) Notch1 promotes the pro-osteogenic response of human aortic valve interstitial cells via modulation of ERK1/2 and nuclear factor-κB activation. Arterioscler Thromb Vasc Biol 33:1580–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li L, Zhang J, Xiong N, Li S, Chen Y, Yang H et al (2016) Notch-1 signaling activates NF-κB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway. Med Oncol 33:33

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the staff in the department of Nephrology of Linyi People’s Hospital for their help on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, X., Zuo, X., Liu, X. et al. Crosstalk between TLR4 and Notch1 signaling in the IgA nephropathy during inflammatory response. Int Urol Nephrol 50, 779–785 (2018). https://doi.org/10.1007/s11255-017-1760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-017-1760-2

Keywords

Navigation