Advertisement

International Urology and Nephrology

, Volume 50, Issue 2, pp 289–299 | Cite as

Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies

Nephrology - Review

Abstract

The complicated communities of microbiota colonizing the human gastrointestinal tract exert a strong function in health maintenance and disease prevention. Indeed, accumulating evidence has indicated that the intestinal microbiota plays a key role in the pathogenesis and development of chronic kidney disease (CKD). Modulation of the gut microbiome composition in CKD may contribute to the accumulation of gut-derived uremic toxins, high circulating level of lipopolysaccharides and immune deregulation, all of which play a critical role in the pathogenesis of CKD and CKD-associated complications. In this review, we discuss the recent findings on the potential impact of gut microbiota in CKD and the underlying mechanisms by which microbiota can influence kidney diseases and vice versa. Additionally, the potential efficacy of pre-, pro- and synbiotics in the restoration of healthy gut microbia is described in detail to provide future directions for research.

Keywords

Chronic kidney disease (CKD) Intestinal microbiota Uremic toxins Lipopolysaccharides (LPS) Immune deregulation Prebiotic Probiotics 

Abbreviations

BUN

Blood urea nitrogen

CKD

Chronic kidney disease

CVD

Cardiovascular disease

DMA

Dimethylamine

ESKD

End-stage kidney disease

GFR

Glomerular filtration rate

GIT

Gastrointestinal tract

GLP-1

Glucagon-like peptide 1

GOSs

Galacto-oligosaccharides

IL-6

Interleukin-6

IS

Indoxyl sulfate

LPS

Lipopolysaccharides

NKT

Natural killer T

PCS

P-cresyl sulfate

PYY

Peptide YY

RS

Resistant starch

SCFAs

Short-chain fatty acids

Notes

Acknowledgements

We thank Yue Cai for critical review and important intellectual contributions to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors have declared that no conflict of interests exists.

References

  1. 1.
    Gansevoort RT, Correa-Rotter R, Hemmelgarn BR et al (2013) Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382(9889):339–352PubMedCrossRefGoogle Scholar
  2. 2.
    Evenepoel P, Meijers BK, Bammens BR et al (2009) Uremic toxins originating from colonic microbial metabolism. Kidney Int 76:S12–S19CrossRefGoogle Scholar
  3. 3.
    Anders H-J, Andersen K, Stecher B (2013) The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 83(6):1010–1016PubMedCrossRefGoogle Scholar
  4. 4.
    Szeto C-C, Kwan BC-H, Chow K-M et al (2008) Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol 3(2):431–436PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Housman A, Shropshire Lad A Incidence and prevalence. United States Renal Data System. In: Proceedings of the 2010 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States, vol 2. Atlas of ESRDGoogle Scholar
  6. 6.
    Cerf-Bensussan N, Eberl G (2012) The dialog between microbiota and the immune system: shaping the partners through development and evolution. Semin Immunol 24(1):1–2PubMedCrossRefGoogle Scholar
  7. 7.
    Gonçalves S, Pecoits-Filho R, Perreto S et al (2006) Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol Dial Transplant 21(10):2788–2794PubMedCrossRefGoogle Scholar
  8. 8.
    Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546PubMedCrossRefGoogle Scholar
  9. 9.
    Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15(13):1546–1558PubMedCrossRefGoogle Scholar
  10. 10.
    Vaziri ND (2012) CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity. Curr Opin Nephrol Hypertens 21(6):587PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bäckhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920PubMedCrossRefGoogle Scholar
  12. 12.
    Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22(1):283–307PubMedCrossRefGoogle Scholar
  13. 13.
    Ley RE, Turnbaugh PJ, Klein S et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022PubMedCrossRefGoogle Scholar
  14. 14.
    Lam V, Su J, Koprowski S et al (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26(4):1727–1735PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hida M, Aiba Y, Sawamura S et al (1996) Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin®, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74(2):349–355PubMedCrossRefGoogle Scholar
  17. 17.
    Simenhoff M, Dunn S, Zollner G et al (1995) Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab 22(1–3):92–96Google Scholar
  18. 18.
    Vaziri ND, Wong J, Pahl M et al (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83(2):308–315PubMedCrossRefGoogle Scholar
  19. 19.
    Aron-Wisnewsky J, Clément K (2016) The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 12(3):169–181PubMedCrossRefGoogle Scholar
  20. 20.
    Mafra D, Lobo JC, Barros AF et al (2014) Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol 9(3):399–410PubMedCrossRefGoogle Scholar
  21. 21.
    Sabatino A, Regolisti G, Brusasco I et al (2015) Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transplant 30(6):924–933PubMedCrossRefGoogle Scholar
  22. 22.
    Carrero JJ, Stenvinkel P (2009) Persistent inflammation as a catalyst for other risk factors in chronic kidney disease: a hypothesis proposal. Clin J Am Soc Nephrol 4(Supplement 1):S49–S55PubMedCrossRefGoogle Scholar
  23. 23.
    Neirynck N, Vanholder R, Schepers E et al (2013) An update on uremic toxins. Int Urol Nephrol 45(1):139–150PubMedCrossRefGoogle Scholar
  24. 24.
    Sirich TL, Funk BA, Plummer NS et al (2014) Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. J Am Soc Nephrol 25(3):615–622PubMedCrossRefGoogle Scholar
  25. 25.
    Soulage CO, Koppe L, Fouque D (2013) Protein-bound uremic toxins… new targets to prevent insulin resistance and dysmetabolism in patients with chronic kidney disease. J Ren Nutr 23(6):464–466PubMedCrossRefGoogle Scholar
  26. 26.
    Hughes R, Magee E, Bingham S (2000) Protein degradation in the large intestine: relevance to colorectal cancer. Curr Issues Intest Microbiol 1(2):51–58PubMedGoogle Scholar
  27. 27.
    Meijers BK, Verbeke K, Dehaen W et al (2009) The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am J Kidney Dis 54(5):891–901PubMedCrossRefGoogle Scholar
  28. 28.
    Meijers BK, Claes K, Bammens B et al (2010) p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin J Am Soc Nephrol 5(7):1182–1189PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Koppe L, Pillon NJ, Vella RE et al (2013) p-Cresyl sulfate promotes insulin resistance associated with CKD. J Am Soc Nephrol 24(1):88–99PubMedCrossRefGoogle Scholar
  30. 30.
    Mutsaers HA, Stribos EG, Glorieux G et al (2015) Chronic kidney disease and fibrosis: the role of uremic retention solutes. Front Med 2:60CrossRefGoogle Scholar
  31. 31.
    Meijers BK, Evenepoel P (2011) The gut–kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrol Dial Transplant 26(3):759–761PubMedCrossRefGoogle Scholar
  32. 32.
    Barreto FC, Barreto DV, Liabeuf S et al (2009) Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 4(10):1551–1558PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Raff AC, Meyer TW, Hostetter TH (2008) New insights into uremic toxicity. Curr Opin Nephrol Hypertens 17(6):560–565PubMedCrossRefGoogle Scholar
  34. 34.
    Faure V, Dou L, Sabatier F et al (2006) Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 4(3):566–573PubMedCrossRefGoogle Scholar
  35. 35.
    Tumur Z, Shimizu H, Enomoto A et al (2010) Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-ĸB activation. Am J Nephrol 31(5):435–441PubMedCrossRefGoogle Scholar
  36. 36.
    Lekawanvijit S, Adrahtas A, Kelly DJ et al (2010) Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes? Eur Heart J 31(14):1771–1779PubMedCrossRefGoogle Scholar
  37. 37.
    Aoki K, Teshima Y, Kondo H et al (2015) Role of indoxyl sulfate as a predisposing factor for atrial fibrillation in renal dysfunction. J Am Heart Assoc 4(10):e002023PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gross P, Massy ZA, Henaut L et al (2015) Para-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling. J Cell Physiol 230(12):2927–2935PubMedCrossRefGoogle Scholar
  39. 39.
    Lin C-J, Pan C-F, Liu H-L et al (2012) The role of protein-bound uremic toxins on peripheral artery disease and vascular access failure in patients on hemodialysis. Atherosclerosis 225(1):173–179PubMedCrossRefGoogle Scholar
  40. 40.
    Lin C-J, Wu V, Wu P-C et al (2015) Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS ONE 10(7):e0132589PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Nii-Kono T, Iwasaki Y, Uchida M et al (2007) Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int 71(8):738–743PubMedCrossRefGoogle Scholar
  42. 42.
    Lin C-J, Pan C-F, Chuang C-K et al (2014) Association of indoxyl sulfate with fibroblast growth factor 23 in patients with advanced chronic kidney disease. Am J Med Sci 347(5):370–376PubMedCrossRefGoogle Scholar
  43. 43.
    Hirata J, Hirai K, Asai H et al (2015) Indoxyl sulfate exacerbates low bone turnover induced by parathyroidectomy in young adult rats. Bone 79:252–258PubMedCrossRefGoogle Scholar
  44. 44.
    Howitt MR, Garrett WS (2012) A complex microworld in the gut: gut microbiota and cardiovascular disease connectivity. Nat Med 18(8):1188–1189PubMedCrossRefGoogle Scholar
  45. 45.
    Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Rak K, Rader DJ (2011) Cardiovascular disease: the diet-microbe morbid union. Nature 472(7341):40–41PubMedCrossRefGoogle Scholar
  47. 47.
    Stubbs JR, House JA, Ocque AJ et al (2016) Serum trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J Am Soc Nephrol 27(1):305–313PubMedCrossRefGoogle Scholar
  48. 48.
    Missailidis C, Hällqvist J, Qureshi AR et al (2016) Serum trimethylamine-N-oxide is strongly related to renal function and predicts outcome in chronic kidney disease. PLoS ONE 11(1):e0141738PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kaysen GA, Johansen KL, Chertow GM et al (2015) Associations of trimethylamine N-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J Ren Nutr 25(4):351–356PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Saito A, Takagi T, Chung T et al (1983) Serum levels of polyamines in patients with chronic renal failure. Kidney Int 16:S234–S237Google Scholar
  51. 51.
    Lutz W (1979) A uremic peptide containing polyamine: formation and possible role in uremic hypertriglyceridemia. Physiol Chem Phys 12(5):451–456Google Scholar
  52. 52.
    Chiang C-K, Tanaka T, Inagi R et al (2011) Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Investig 91(11):1564–1571PubMedCrossRefGoogle Scholar
  53. 53.
    Nangaku M, Mimura I, Yamaguchi J et al (2015) Role of uremic toxins in erythropoiesis-stimulating agent resistance in chronic kidney disease and dialysis patients. J Ren Nutr 25(2):160–163PubMedCrossRefGoogle Scholar
  54. 54.
    Ahmed MSE, Abed M, Voelkl J et al (2013) Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol 14(1):244PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Yoshida K, Yoneda T, Kimura S et al (2006) Polyamines as an inhibitor on erythropoiesis of hemodialysis patients by in vitro bioassay using the fetal mouse liver assay. Ther Apheresis Dial 10(3):267–272CrossRefGoogle Scholar
  56. 56.
    Cario E, Gerken G, Podolsky D (2007) Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132(4):1359–1374PubMedCrossRefGoogle Scholar
  57. 57.
    Schlee M, Harder J, Köten B et al (2008) Probiotic lactobacilli and VSL# 3 induce enterocyte β-defensin 2. Clin Exp Immunol 151(3):528–535PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kiechl S, Lorenz E, Reindl M et al (2002) Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 347(3):185–192PubMedCrossRefGoogle Scholar
  59. 59.
    Muccioli GG, Naslain D, Bäckhed F et al (2010) The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 6(1):392PubMedPubMedCentralGoogle Scholar
  60. 60.
    Sivapalaratnam S, Farrugia R, Nieuwdorp M et al (2011) Identification of candidate genes linking systemic inflammation to atherosclerosis; results of a human in vivo LPS infusion study. BMC Med Genomics 4(1):64PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ryu M, Kulkarni OP, Radomska E et al (2011) Bacterial CpG-DNA accelerates Alport glomerulosclerosis by inducing an M1 macrophage phenotype and tumor necrosis factor-α-mediated podocyte loss. Kidney Int 79(2):189–198PubMedCrossRefGoogle Scholar
  62. 62.
    Patole PS, Pawar RD, Lichtnekert J et al (2007) Coactivation of Toll-like receptor-3 and -7 in immune complex glomerulonephritis. J Autoimmun 29(1):52–59PubMedCrossRefGoogle Scholar
  63. 63.
    Farhadi A, Banan A, Fields J et al (2003) Intestinal barrier: an interface between health and disease. J Gastroenterol Hepatol 18(5):479–497PubMedCrossRefGoogle Scholar
  64. 64.
    Magnusson M, Magnusson K-E, Sundqvist T et al (1990) Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low-and high-protein diets. Nephron 56(3):306–311PubMedCrossRefGoogle Scholar
  65. 65.
    Magnusson M, Magnusson K, Sundqvist T et al (1991) Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut 32(7):754–759PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kang J (1993) The gastrointestinal tract in uremia. Dig Dis Sci 38(2):257–268PubMedCrossRefGoogle Scholar
  67. 67.
    de Almeida Duarte JB, de Aguilar-Nascimento JE, Nascimento M et al (2004) Bacterial translocation in experimental uremia. Urol Res 32(4):266–270PubMedCrossRefGoogle Scholar
  68. 68.
    Vaziri ND, Yuan J, Nazertehrani S et al (2013) Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am J Nephrol 38(2):99–103PubMedCrossRefGoogle Scholar
  69. 69.
    Vaziri N, Dure-Smith B, Miller R et al (1985) Pathology of gastrointestinal tract in chronic hemodialysis patients: an autopsy study of 78 cases. Am J Gastroenterol 80(8):608–611PubMedGoogle Scholar
  70. 70.
    Ding L-A, Li J-S (2003) Gut in diseases: physiological elements and their clinical significance. World J Gastroenterol 9(11):2385–2389PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wang F, Zhang P, Jiang H et al (2012) Gut bacterial translocation contributes to microinflammation in experimental uremia. Dig Dis Sci 57(11):2856–2862PubMedCrossRefGoogle Scholar
  72. 72.
    Wang F, Jiang H, Shi K et al (2012) Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrology 17(8):733–738PubMedCrossRefGoogle Scholar
  73. 73.
    Alegre ML, Mannon RB, Mannon PJ (2014) The microbiota, the immune system and the allograft. Am J Transplant 14(6):1236–1248PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Bromberg JS, Fricke WF, Brinkman CC et al (2015) Microbiota [mdash] implications for immunity and transplantation. Nat Rev Nephrol 11(6):342–353PubMedCrossRefGoogle Scholar
  75. 75.
    Stenvinkel P (2005) Inflammation in end-stage renal disease–a fire that burns within. Contrib Nephrol 149:185–199PubMedCrossRefGoogle Scholar
  76. 76.
    Kato S, Chmielewski M, Honda H et al (2008) Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol 3(5):1526–1533PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Stearns-Kurosawa DJ, Osuchowski MF, Valentine C et al (2011) The pathogenesis of sepsis. Annu Rev Pathol Mech Dis 6:19–48CrossRefGoogle Scholar
  78. 78.
    Carrero JJ, Stenvinkel P (2010) Inflammation in end-stage renal disease—What have we learned in 10 years? Semin Dial 23(5):498–509PubMedCrossRefGoogle Scholar
  79. 79.
    Harris K, Kassis A, Major G et al (2012) Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes 2012:879151PubMedPubMedCentralGoogle Scholar
  80. 80.
    Chow J, Tang H, Mazmanian SK (2011) Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol 23(4):473–480PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12(1):5–9PubMedCrossRefGoogle Scholar
  82. 82.
    Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455(7216):1109–1113PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4(6):478–485PubMedCrossRefGoogle Scholar
  84. 84.
    Kranich J, Maslowski KM, Mackay CR (2011) Commensal flora and the regulation of inflammatory and autoimmune responses. Semin Immunol 23(2):139–145PubMedCrossRefGoogle Scholar
  85. 85.
    Niebauer J, Volk H-D, Kemp M et al (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353(9167):1838–1842PubMedCrossRefGoogle Scholar
  86. 86.
    McIntyre CW, Harrison LE, Eldehni MT et al (2011) Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin J Am Soc Nephrol 6(1):133–141PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lee YK, Menezes JS, Umesaki Y et al (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci 108(Supplement 1):4615–4622PubMedCrossRefGoogle Scholar
  88. 88.
    Vaziri ND, Pahl MV, Crum A et al (2012) Effect of uremia on structure and function of immune system. J Ren Nutr 22(1):149–156PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Janus N, Vacher L-V, Karie S et al (2008) Vaccination and chronic kidney disease. Nephrol Dial Transplant 23(3):800–807PubMedCrossRefGoogle Scholar
  90. 90.
    Hotchkiss RS, Coopersmith CM, McDunn JE et al (2009) The sepsis seesaw: tilting toward immunosuppression. Nat Med 15(5):496–497PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Mutsaers HA, Engelke UF, Wilmer MJ et al (2013) Optimized metabolomic approach to identify uremic solutes in plasma of stage 3–4 chronic kidney disease patients. PLoS ONE 8(8):e71199PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Konstantinov SR, Smidt H, de Vos WM et al (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci 105(49):19474–19479PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Van Baarlen P, Troost FJ, van Hemert S et al (2009) Differential NF-κB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci 106(7):2371–2376PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Murthy M, Venkitanarayan K, Rangavajhyala N et al (2000) Delineation of beneficial characteristics of effective probiotics. JAMA 3(2):38–43Google Scholar
  95. 95.
    Chen L, Liu W, Li Y et al (2013) Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process. Int Immunopharmacol 17(1):108–115PubMedCrossRefGoogle Scholar
  96. 96.
    Ranganathan N, Patel B, Ranganathan P et al (2005) Probiotic amelioration of azotemia in 5/6th nephrectomized Sprague-Dawley rats. Sci World J 5:652–660CrossRefGoogle Scholar
  97. 97.
    Ranganathan N, Patel BG, Ranganathan P et al (2006) In vitro and in vivo assessment of intraintestinal bacteriotherapy in chronic kidney disease. ASAIO J 52(1):70–79PubMedCrossRefGoogle Scholar
  98. 98.
    Niwa T (2011) Role of indoxyl sulfate in the progression of chronic kidney disease and cardiovascular disease: experimental and clinical effects of oral sorbent AST-120. Ther Apheresis Dial 15(2):120–124CrossRefGoogle Scholar
  99. 99.
    Ueda H, Shibahara N, Takagi S et al (2008) AST-120 treatment in pre-dialysis period affects the prognosis in patients on hemodialysis. Ren Fail 30(9):856–860PubMedCrossRefGoogle Scholar
  100. 100.
    Takayama F, Taki K, Niwa T (2003) Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. Am J Kidney Dis 41(3):S142–S145PubMedCrossRefGoogle Scholar
  101. 101.
    Taki K, Takayama F, Niwa T (2005) Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. J Ren Nutr 15(1):77–80PubMedCrossRefGoogle Scholar
  102. 102.
    Piñero-Lambea C, Ruano-Gallego D, Fernández LÁ (2015) Engineered bacteria as therapeutic agents. Curr Opin Biotechnol 35:94–102PubMedCrossRefGoogle Scholar
  103. 103.
    Mandell DJ, Lajoie MJ, Mee MT et al (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518(7537):55–60PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401PubMedGoogle Scholar
  105. 105.
    Gibson GR, Probert HM, Van Loo J et al (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17(02):259–275PubMedCrossRefGoogle Scholar
  106. 106.
    Silk D, Davis A, Vulevic J et al (2009) Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther 29(5):508–518PubMedCrossRefGoogle Scholar
  107. 107.
    Meijers BK, De Preter V, Verbeke K et al (2010) p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant 25(1):219–224PubMedCrossRefGoogle Scholar
  108. 108.
    Salmean YA, Segal MS, Langkamp-Henken B et al (2013) Foods with added fiber lower serum creatinine levels in patients with chronic kidney disease. J Ren Nutr 23(2):e29–e32PubMedCrossRefGoogle Scholar
  109. 109.
    Cani PD, Neyrinck A, Fava F et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50(11):2374–2383PubMedCrossRefGoogle Scholar
  110. 110.
    Broekaert WF, Courtin CM, Verbeke K et al (2011) Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 51(2):178–194PubMedCrossRefGoogle Scholar
  111. 111.
    Gibson GR, Beatty ER, Wang X et al (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108(4):975–982PubMedCrossRefGoogle Scholar
  112. 112.
    Pylkas AM, Juneja LR, Slavin JL (2005) Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora. J Med Food 8(1):113–116PubMedCrossRefGoogle Scholar
  113. 113.
    Reimer R, McBURNEY MI (1996) Dietary fiber modulates intestinal proglucagon messenger ribonucleic acid and postprandial secretion of glucagon-like peptide-1 and insulin in rats. Endocrinology 137(9):3948–3956PubMedCrossRefGoogle Scholar
  114. 114.
    Dumoulin V, Moro F, Barcelo A et al (1998) Peptide YY, glucagon-like peptide-1, and neurotensin responses to luminal factors in the isolated vascularly perfused rat ileum. Endocrinology 139(9):3780–3786PubMedCrossRefGoogle Scholar
  115. 115.
    Drucker DJ (2006) The biology of incretin hormones. Cell Metab 3(3):153–165PubMedCrossRefGoogle Scholar
  116. 116.
    Ranganath L, Beety J, Morgan L et al (1996) Attenuated GLP-1 secretion in obesity: cause or consequence? Gut 38(6):916–919PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Batterham RL, Cowley MA, Small CJ et al (2002) Gut hormone PYY3-36 physiologically inhibits food intake. Nature 418(6898):650PubMedCrossRefGoogle Scholar
  118. 118.
    Delzenne NM, Cani PD, Daubioul C et al (2005) Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 93(S1):S157–S161PubMedCrossRefGoogle Scholar
  119. 119.
    Alimentarius C (2010) Guidelines on nutrition labelling CAC/GL 2-1985 as last amended 2010. Joint FAO/WHO Food Standards Programme, Secretariat of the Codex Alimentarius Commission, FAO, RomeGoogle Scholar
  120. 120.
    Chiavaroli L, Mirrahimi A, Sievenpiper J et al (2015) Dietary fiber effects in chronic kidney disease: a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr 69(7):761PubMedCrossRefGoogle Scholar
  121. 121.
    Vaziri ND, Liu S-M, Lau WL et al (2014) High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS ONE 9(12):e114881PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sirich TL, Plummer NS, Gardner CD et al (2014) Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 9(9):1603–1610PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Evenepoel P, Bammens B, Verbeke K et al (2006) Acarbose treatment lowers generation and serum concentrations of the protein-bound solute p-cresol: a pilot study. Kidney Int 70(1):192–198PubMedCrossRefGoogle Scholar
  124. 124.
    Rossi M, Johnson DW, Morrison M et al (2016) Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol 11(2):223–231PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Nakabayashi I, Nakamura M, Kawakami K et al (2011) Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant 26(3):1094–1098PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Faculty of Foreign Languages and CulturesKunming University of Science and TechnologyKunmingChina
  2. 2.Medical FacultyKunming University of Science and TechnologyKunmingChina
  3. 3.Genetics and Pharmacogenomics LaboratoryKunming University of Science and TechnologyKunmingChina

Personalised recommendations